
TypeScript
Introduction

Setup
Install
IDEs
Example

Organization

Types
Arrays
Tuples
Enums
String Literal
Objects
Functions
Generics
Unions
Intersections
Aliases

Syntax
Variables
Constants
Casting
Instanceof
Functions

Optional Parameters
Default Parameters
Rest Parameters
Overloads
Lambdas

Interfaces
Optional Fields
Readonly Fields

Classes
Constructor Fields
Optional Fields
Readonly Fields

Accessor Functions (Getters and Setters)
Constructor Functions
Static Fields / Functions

Namespaces
Exporting
Importing
Splitting

Spreading
Destructuring
Decorators

Class
Methods and Accessors
Fields

Modules
Exporting
Importing

Interfacing with Javascript
Ambient Declarations/Definitions
Type Definitions

TSLint

Introduction
TypeScript is a superset of Javascript that tightens up some of the fast-and-loose paradigms
that make Javascript error-prone and difficult to use. For example, TypeScript gives you the
ability to use…

● statically type variables / strong typing
● generics
● enums
● interfaces
● classes (explicitly defined constructors, fields, methods, and visibility)
● packages (called namespaces/modules in TypeScript)
● lambdas (called arrow functions in TypeScript)

The upside to all of this is that your code will be more maintainable and less error-prone. It’s
also more friendly for developers coming from other languages (e.g. Java) and allows for better
tooling support (e.g. better Intellisense support and more immediate feedback on warnings and
errors).

The downside is that you may lose access to some of the features of Javascript that other
normal Javascript developers use regularly.

Ultimately, your TypeScript code gets “compiled” down to pure Javascript. Since TypeScript is a
superset of Javascript, you can still insert Javascript directly into your TypeScript code and call
Javascript from TypeScript.

Setup
The following subsections discuss common setup and usage instructions for TypeScript.

Install
The easiest way to install TypeScript is via the Node Package Manager (npm): npm install -g
typescript...

~/test $ npm install -g typescript

/home/user/.nvm/versions/node/v8.9.1/bin/tsc ->

/home/user/.nvm/versions/node/v8.9.1/lib/node_modules/typescript/bin/tsc

/home/user/.nvm/versions/node/v8.9.1/bin/tsserver ->

/home/user/.nvm/versions/node/v8.9.1/lib/node_modules/typescript/bin/tsserv

er

+ typescript@2.6.2

added 1 package in 1.66s

NOTE: If you need a refresher on NodeJS or npm, check out the other documents. You
may need to run as sudo.

Once installed, you can manually run the TypeScript compiler via tsc...

~/test $ tsc

Version 2.6.2

Syntax: tsc [options] [file ...]

Examples: tsc hello.ts

 tsc --outFile file.js file.ts

 tsc @args.txt

IDEs
Instead of compiling manually, you’d be better off using an IDE. VSCode seems to be main IDE
to use. I’ve tried plugins for Eclipse but they don’t seem to work, and the plugin for NetBeans
looks to be missing features.

NOTE: You may have issues setting up VSCode with TypeScript if you’re using node
version manager.

To setup VSCode to work with typescript, you first need to have a tsconfig.json file in the root of
your project. This is where you define your configuration options for the TypeScript compiler…

{

 "compilerOptions": {
 "target": "es5",
 "module": "commonjs",
 "sourceMap": true,
 "strict": true
 }

}

NOTE: tsconfig.json is used to configure the TypeSciprt compiler for a project. It’s
typically placed in the root of a project. A full list of options for tsconfig.json can be found
at https://www.typescriptlang.org/docs/handbook/tsconfig-json.html, but the example
above is a good base to work off of. It may be a good idea to set the allowJs option to
false and the out option to some subdir where the resulting js files can be dumped (or
outFile if you want a single huge js file).

Once that’s up, in VSCode you can hit Ctrl+Shift+B and get a list of self-explanatory tasks that
you can run…

If you try to Debug your code from VSCode (F5), you’ll get a .vscode/launch.json file in your root
folder with launch configurations. You can add to this file if you want to use different TypeScript
files to debug…

{

 // Use IntelliSense to learn about possible attributes.

 // Hover to view descriptions of existing attributes.

 // For more information, visit:

https://go.microsoft.com/fwlink/?linkid=830387
 "version": "0.2.0",
 "configurations": [

 {

https://www.typescriptlang.org/docs/handbook/tsconfig-json.html

 "type": "node",
 "request": "launch",
 "name": "Launch Program",
 "program": "${workspaceFolder}/helloWorld.ts",
 "outFiles": [
 "${workspaceFolder}/**/*.js"
]

 },

 {

 "type": "node",
 "request": "launch",
 "name": "Launch Test Script",
 "program": "${workspaceFolder}/test.ts",
 "outFiles": [
 "${workspaceFolder}/**/*.js"
]

 }

]

}

Example
The following is a simple example of TypeScript code...

class TestClass {
 name: String;
 count: Number;
 public constructor (name: string, count: number) {
 this.name = name;
 this.count = count;
 }

 public output() {
 console.log(this.name + ' ' + this.count);
 }

}

new TestClass('nametest', 99).output();

The code above gets translated to Javascript…

"use strict";
var TestClass = /** @class */ (function () {
 function TestClass(name, count) {

 this.name = name;
 this.count = count;
 }

 TestClass.prototype.output = function () {
 console.log(this.name + ' ' + this.count);
 };

 return TestClass;
}());

new TestClass('nametest', 99).output();
//# sourceMappingURL=helloWorld.js.map

Where you can run it directly from NodeJS…

~/test $ node helloWorld.js

nametest 99

Organization
Much like Java and C#, the general hierarchy of code written in TypeScript is breakdown by
namespace, followed by classes and interfaces, followed by fields and methods within those
classes…

NOTE: Modules/namespaces in TypeScript are somewhat equivalent to Java packages.
Unlike Java packages, you explicitly have to export functionality from your
namespaces/modules.

Types
TypeScript’s type system give you following basic types…

● basic primitives: e.g. number, string, boolean

● object types: e.g. functions, classes, interfaces, modules, literals
● union types: e.g. string | boolean | Window
● any type: can be anything
● null type: must be set to null?
● undefined type: must be set to undefined?
● void type: for functions/methods that return nothing

NOTE: null and undefined may seem useless but see the section on union types --
they’re really important if you want nullable types.

Arrays
This is how you specify array types and provide initial values in TypeScript...

var a: number[];
var b: number[] = [1, 2, 3];

You can access arrays just like you would in Javascript/Java. In addition, arrays provide several
functions/methods that you can call to do common things such as sort/slice/reverse/etc…

console.log(b);
console.log(b[2]);
console.log(b.slice(0,2));

~/test $ node helloWorld.js

[1, 2, 3]

3

[1, 2]

NOTE: Another way of declaring an array is via the generics syntax. For example, if I
wanted to declare an array of numbers, I’d do Array<number> = [0,1,2].

Tuples
TypeScript has built-in support for tuples. For example…

var x: [number, string];
x = [1, 'a'];
console.log(x);
console.log(x[0]);
console.log(x[1]);

Enums
TypeScript has built-in support for enums. Internally, enums are treated as numbers (just like in
C/C++). For example…

enum Category { A = 9, B, C };
var x: Category = Category.B;
console.log(x);
console.log(Category.B);

~/test $ node helloWorld.js

10

10

String Literal
String literal types are types that can only be assigned to the string literal defined by the type.
For example…

var x: 'Test';
x = 'Test';

In the above example, you can’t set the variable x to anything other than the string Test. This
may seem useless until you combine them with union types -- at which point you get something
close to an enumeration. For example…

var x: 'Started' | 'Stopped' | 'Running';
x = 'Running';

Objects
TypeScript has built-in support for a Object type. For example…

var x:Object = {
 h: 10,
 w: 20
};

The Object type is a generic type. It’s very similar to java.lang.Object in that it can point to
anything -- functions, classes, interfaces, objects, modules, numbers, strings, etc... For
example, the following code is perfectly valid…

class c {
 h:number=10;

 w:number=20;
};

var x:Object = c;
var y:Object = new c();
var z:Object = 'hi';

console.log(x);
console.log(y);
console.log(z);

Here’s what it outputs…

~/test $ node helloWorld.js

[Function: c]

c { h: 10, w: 20 }

hi

NOTE: How is this different from the any type? According to
https://stackoverflow.com/a/18961904/1196226, Object is more restrictive than any in
that it will throw compile-time errors if you try to invoke a method on it. If you use any as
the type, it won’t throw a compile-time error. So the moral of the story is always use
Object over any?

Functions
Since callback functions are used frequently in Javascript, you can create function types in
TypeScript. For example…

var a = function func1(x:number, y:number): string {
 return String(x + y);
}

var b: (x:number, y:number)=>string;

b=a;

console.log(b(5,5));

There’ll be more on types in the syntax section, but right now all you need to know is that when
you’re type is a function, you…

● don’t include the function keyword
● don’t include the function name
● replace the : before the return type with a =>

https://stackoverflow.com/a/18961904/1196226

NOTE: The generic type of a function is Function. Just like how Object can point to pretty
much any TypeScript object, Function can point to pretty much any TypeScript function
as well as can be invoked as a function. The problem with that is no safety checks
happen at design-time if you do invocations on Functions.

Generics
Just like with Java, we can use generics inside of TypeScript. A good example of generics is the
Array class: the class which all arrays in typescript derive from. You can see that generic types
are declared and used in pretty much the same way…

interface Array<T> {
...

 reverse(): T[];

 /**
 * Removes the first element from an array and returns it.

 */

 shift(): T | undefined;
 /**
 * Returns a section of an array.

 * @param start The beginning of the specified portion of the array.

 * @param end The end of the specified portion of the array.

 */

 slice(start?: number, end?: number): T[];
...

}

Just like with Java generics, you can pass in multiple type parameters and even have your type
parameters be constrained to some higher-level type…

function getProperty<T, K extends MyClass>(obj: T, key: K) {
 ...

}

Just like with Java generics, you can declare the parameter type directly on the method/function
instead of on a class/interface…

function func<T extends number>(val: T): number {
 return val + 10;
}

Unions
Union types are types that can be one of many types. For example…

var x: number | string;

x = 'aaa';
x = 4;

In many cases, you won’t be able to set a variable to null/undefined (even if the type is
non-primitive). The whole point of having null and undefined types is that you can use union
types to have nullable/undefinable variables. For example…

var x: number | null;
x = null;

Intersections
Intersection types are types where the value must be of all the declared types. For example...

var x: Serializable & Loggable;

Intersection types must include all the members from the types being intersected. Remember
that TypeScript doesn’t have runtime type information, so as long as all the expected members
are there, this will work. That means that what you’re assigning to the example variable above
doesn’t have to be a class instance that implements Serializable and Loggable, it just has to
have all the same members as those interfaces.

NOTE: This seems to be an niche feature. The documentation indicates that this feature
is useful for mixins, which is some Javascript way of combining functionality from many
classes together.

Aliases
Type aliases are the same thing as typedefs. To declare a typedef / type alias, use the type
keyword. For example…

type nullableString = string | null;

var x: nullableString = 'mystr';
x = null;

Syntax
TypeScript’s syntax is very similar to most other object oriented languages (e.g. Java or C#).

The following is a brief overview of the TypeScript keywords and what they’re for. A lot of this
should be self explanatory. The subsections below will cover these in a bit more detail.

● curly brackets ({ }) for wrapping blocks of code
● semicolons (;) for ending statements
● while/for/do-while for loops
● if/else/switch for conditionals
● class/interface for defining classes or interfaces
● construct for defining class constructor methods
● public/protected/private for defining visibility of class properties
● extends for inheriting from another class
● implements for implementing an interface
● import to import some functionality
● ... for specifying varargs (called rest parameters in TypeScript)
● module/namespace for defining packages
● => { … } for lambdas
● <typename> for casting a variable
● name: type for defining class fields and function parameters
● const for declaring a constant variable
● readonly for declaring a final variable
● export for making things visible from a module

Variables
Declaring variables inside of TypeScript is similar to Javascript. The main difference is that you
can pass in a type when you declare a variable…

var a: number = 2;

We can also leave out the type, but when we do that it will implicitly type that variable to
whatever we shoved into it...

var a = 2; // is automatically typed as number
var c = a + 2; // is automatically typed as number

If we don’t initialize the variable and also leave out the type, the variable will automatically get
typed as any.

NOTE: In addition to var, typescript also supports let from the newer ECMA standards.
Using let will give you variable scoping rules similar to Java/C#, so you might want to
switch to using let instead of var.

Constants
Declare constants inside of TypeScript similarly to how you declare variables, but use the const
keyword instead…

const a = 2;
const b:number = Math.random();
var c:number = a + b;

NOTE: A constant and a final/readonly field are different things.

Casting
You can cast one type to another using the greater than / less than braces (< >). For example…

class Type1 { }
class Type2 extends Type1 {
 x: number = 5;
}

var inst: Type1 = new Type2();
const val = (<Type2> inst).x;

Just like with Java, the TypeScript casting system will stop you from casting to things that aren’t
possible. For example, if you tried to cast a number to a string you would get back a
compile-time error.

NOTE: To convert a number to a string, use number.toString(). For the opposite, use
parseInt() or parseFloat().

Instanceof
Type guards are pretty much the same thing as instanceof in Java…

class C {}
class P {}

let a: C | P;
a = new C();

console.log(a instanceof P);

NOTE: These only work on classes because classes have constructors and that’s whati t
looks for. They don’t work on interfaces. Interfaces don’t have constructors or any kidn of
runtime type information stored. For interfaces, you have to use user-defined type
guards where you specifically have to have a function do the checks. See the bottom of
https://basarat.gitbooks.io/typescript/docs/types/typeGuard.html for an example.

One feature specific to TypeScript is that if you’re using instanceof in a if/else (or other kind of
branching operation?), it’ll automatically cast if the branch you goto is for the instanceof passing.
For example…

class C {}
class P {
 public pField: number = 10;
}

let a: C | P;
a = new P();

if (a instanceof P) {
 console.log(a.pField);
}

Notice how in the example above, there was no explicit cast to P in the if statement. The
compiler automatically figures it out.

Functions
Functions can be declared as such…

function func1(x:number, y:number): string {
 return String(x + y);
};

The important things to note here are that…

● the parameters are typed -- if they aren’t they’ll be inferred (most likely as any)
● there is a return type defined -- if it isn’t there it’ll be inferred
● you must pass args for all the parameters unless otherwise specified (discussed further

in subsections below)

You can also assign a anonymous function to a variable, just like you would in normal
Javascript…

var func1 = function(x:number, y:number) {
 return String(x + y);

https://basarat.gitbooks.io/typescript/docs/types/typeGuard.html

};

Optional Parameters
Unlike Javascript, In TypeScript all the parameters for a function are required. However, you can
explicitly set parameters to be optional by adding a ? directly after the name. For example…

var func1 = function(x:number, y?:number) {
 if (typeof(y) === 'number') {
 return String(x + y);
 } else {
 throw "error";
 }

};

It looks like adding a ? is just shorthand for making the type a union type that includes
undefined. So the function signature in the would be equivalent to…

var func1 = function(x:number, y:number|undefined) {
 ...

}

NOTE: The question mark syntax is specific to functions -- you cannot use them outside
of parameters? For example, var x?:number will fail.

Default Parameters
Default parameters are like optional parameters, but if the value passed into the parameter is
undefined, it’ll use the default type. For example, the following code will print out 21 on each
console.log()…

var func1 = function(x:number, y:number=11) {
 return String(x + y);
};

console.log(func1(10, 11));
console.log(func1(10));
console.log(func1(10, undefined));

Rest Parameters
Rest parameters are TypeScript’s term for varargs. They’re similar to Java’s varargs in that it’s
captured as an array, but…

● you need to explicitly declare that parameter as an array
● the … goes before the name of the parameter

For example...

var func1 = function(name: string, ...values: number[]) {
 console.log(name + values.join(' '))
}

func1("Test", 1, 2, 3, 4, 5, 6)

Overloads
Overloads in TypeScript are a bit different than other languages. To overload a method, you can
provide multiple signatures but only 1 implementation. So long as the signatures can shift their
parameter/return types around to the point where they can be fed into your implementation,
everything will work fine. The following example is from
https://stackoverflow.com/a/13212871/1196226…

function myMethod(a: string): string;
function myMethod(a: number): string;
function myMethod(a: number, b: string): string;
function myMethod(a: string|number, b?: string): string {
 return a.toString();
}

NOTE: If you’re using TypeScript compiler’s strict mode, you’re going to have a tough
time with this. It’ll error out if any of your parameter types or return type resolve to any.

Another way of faking an overload is to create a single implementation, but use union types /
optional types for the parameter types and return types. Here’s the same example as above but
without all the different signatures…

function myMethod(a: string|number, b?: string) {
 return a.toString();
}

Lambdas
You can define functions using the following notation…

var a = (x: number, y: number): number => x * y;

Compare this to the normal way functions are defined…

var b = function(x: number, y: number): number {
 return x * y;
}

https://stackoverflow.com/a/13212871/1196226

Note the differences…

● function keyword missing in lambda
● return keyword missing in lambda

Why is this useful? Think of doing things to streams such as mapping or filtering…

let arr:number[] = [1,2,3,4,5,6,7,8,9];
arr = arr

 .filter(val => val % 2)
 .map(val => val * 10);

In the above example we omitted the parameter types and return type because they were
inferred, but we could have just as easily added them in. It would just make things slightly less
readable…

let arr:number[] = [1,2,3,4,5,6,7,8,9];
arr = arr

 .filter((val: number): number => val % 2)
 .map((val: number): number => val * 10);

The rules here are similar to lambdas in Java. For defining parameters, if you’re running a
function that...

● takes in 0 params: () => false
○ you MUST have an empty set of parentheses no signify no parameters.

● takes in 1 param: x => x*x
○ you MAY wrap the parameter in parenthesis if you want, or leave parenthesis

out.
● takes in >=2 params: (x, y) => x*x

○ you MUST wrap the parameters in parenthesis.
● runs a single statement: x => x*x

○ you MAY omit the curly braces around the body ({ }) -- if you choose to omit the
braces, you MUST omit the return keyword as well.

● runs multiple statement: x => { x = x/2; return x*x; }
○ you MUST wrap curly braces around the body ({ }) and MUST provide a return

statement.

Remember that this same arrow syntax is used to declare types that hold a function. For
example…

var a: (x:number) => number = (x: number): number => x * y

Note that we when use this syntax to declare the type, we place the return type of the function
after the =>, not the computation. The example above declares variable a that accepts a

function with a certain signature, and assigns a function to it with that signature (declared as a
lambda).

Interfaces
Just like Java, your code can have interfaces.

Just like Java, an interface…

● can extend multiple other interfaces
● can make use of generic types.
● defaults visibility of interface members to public.

Unlike Java, interfaces in TypeScript...

● can have fields as well as function definitions.
● can’t have a visibility scope on the interface itself (e.g. private, public, etc…)
● don’t have runtime type information (e.g. can’t do instanceof checks on interfaces, but

can on classes)

NOTE: When defining a function in an interface, remove the function keyword.

NOTE: In Java, you can only implement an interface. In TypeScript, you can implement
a class if you want to. If you do, it’ll treat the class like an interface, meaning you have to
re-implement whatever functions/fields it defines.

Here’s an example of a interface in TypeScript….

interface p {
 aaaa: string;
}

interface d {
 bbbb: string;
}

interface test<T> extends p, d {
 val?: T;

 func1: (msg: string) => string;
 func2: (msg: string) => number;
}

Optional Fields
Just like with functions, your fields can be optional (can be of the type you specified or can be
undefined). To make your field optional, simply add a question mark (?) after its name…

interface test<T> extends p, d {
 val?: T;

 func1: (msg: string) => string;
 func2: (msg: string) => number;
}

Readonly Fields
Readonly fields are like Java final fields. They’re fields that can be set during class construction
and can’t be set again after that. To mark a field as readonly, add the readonly keyword before
the field name...

interface test<T> extends p, d {
 readonly val?: T;

 func1: (msg: string) => string;
 func2: (msg: string) => number;
}

Classes
Just like Java, your code can have classes.

Just like Java, a class…

● can only extend a single class (no multiple inheritance).
● can be abstract.
● can implement multiple interfaces.
● can have a constructor.
● can have final fields (called readonly in TypeScript).
● can have static fields.
● can have static functions/methods.

Unlike Java, a TypeScript class…

● must always use this keyword to access members.
● defaults visibility of class members to public (package-private by default in Java).
● can’t be marked as final/sealed.
● can’t have multiple constructors (use factory methods as a workaround).
● can’t have a visibility scope on the class itself (e.g. private, public, etc…).
● can’t have volatile fields (doesn’t make sense since Javascript is single threaded).
● can automatically turn constructor parameters into fields.

NOTE: Although a class can’t be sealed, you can technically seal it by giving it a private
constructor and having using a factory method to create instances. It looks like the
TypeScript guys don’t want to support this feature.

NOTE: In Java, you can only implement an interface. In TypeScript, you can implement
a class if you want to. If you do, it’ll treat the class like an interface, meaning you have to
re-implement whatever functions/fields it defines.

NOTE: When defining a function in a class, remove the function keyword.

Here’s an example of a class in TypeScript that inherits from another class as well as
implements an interface….

class c {
 val: string = 'hi';
}

interface d {
 myNumStr?: string;
}

class e extends c implements d {
 myNumStr?: string;
 constructor(public myNum: number) {
 super();
 this.myNumStr = myNum.toString();
 }

}

console.log(new e(5));

Constructor Fields
In TypeScript, you can automatically have a constructor parameter be a field on the class as
well. You do this by setting a visibility scope with the parameter. For example…

class MyClass {
 constructor(public myNum: number) {
 }

}

In the above example, myNum will become a field on MyClass that has public visibility. You can
also set it to have protected visibility or private visibility.

Optional Fields
Just like with functions, your fields can be optional (can be of the type you specified or can be
undefined). To make your field optional, simply add a question mark (?) after its name…

interface test<T> extends p, d {

 val?: T;

 func1: (msg: string) => string;
 func2: (msg: string) => number;
}

Readonly Fields
Readonly fields are like Java final fields. They’re fields that can be set during class construction
and can’t be set again after that. To mark a field as readonly, add the readonly keyword before
the field name...

interface test<T> extends p, d {
 readonly val?: T;

 func1: (msg: string) => string;
 func2: (msg: string) => number;
}

Accessor Functions (Getters and Setters)
Instead of providing direct access to a field, you can provide getters and setters like you do in
Java. The syntax for setters and getters in TypeScript is a bit different. Here’s an example…

class MyClass {
 private _myNum: number
 constructor(myNum: number) {
 this._myNum = myNum;
 }

 get myNum(): number {
 return this._myNum;
 }

 set myNum(x: number) {
 this._myNum = x;
 }

}

The long and short of it is that the …

● getter and setter function names should be the same (name of the property).
● getter function must be prefixed with get.
● setter function must be prefixed with set.

In the above example, the getters and setters expose a myNum property that directly
manipulate the _myNum field.

Constructor Functions
Constructors in TypeScript classes require you to use the constructor keyword. You can only
have 1 constructor in a class. If you want more than 1 constructor, your workaround is to
provide static factory functions/methods.

Here’s an example of a constructor…

class MyClass2 {
 protected myInt: number;
 constructor(x: number) {
 this.myInt = x;
 }

}

One feature of TypeScript constructors is that you can force a parameter to automatically map
to a field. You do this my specifying a visibility modifier directly in the parameter. The following
example is equal to the example above…

class MyClass2 {
 constructor(protected myInt: number) {
 }

}

NOTE: Just like Java, if you’re inheriting from another class, you need to call the parent
class’s constructor using super(). Unlike Java, this isn’t done automatically for you in
certain cases -- you need to explicitly do it every time.

Static Fields / Functions
Static fields and static functions work just like they do in Java. You define a member as static
with the static keyword. Here’s an example…

class MyClass {
 public static n: number = 5;
 public static func(x:number) : number {
 return 5;
 }

}

Just like with Java, you can manipulate protected/private instance fields from within a static
function/method. Here’s an example...

class MyClass {
 private n: number = 5;

 public static func(x:MyClass, newN: number) : void {
 x.n = newN;

 }

}

Namespaces
NOTE: Don’t use this. Use modules instead. See the Modules section.

Namespaces are kind of like packages in Java, but not really. They organize code chunks by
logically sticking them together. But, unlike Java, chunks of code under the same
namespace/package aren’t visible to each other unless they’re explicitly exported.

That means that you can have 2 classes in different files but under the same namespace and
they won’t know about each other unless they’re exported. When you export them, they’ll know
about each other, but everyone else will know about them as well. As such, there is no such
thing as package-private scope in TypeScript.

Your stuff is either visible to all namespaces or visible to no namespaces.

NOTE: There currently doesn’t seem to be a way to forcibly export everything in a
namespace.

NOTE: Namespaces were called modules in older versions of TypeScript.

Just like Java, namespaces...

● are hierarchical.
● are separated by dots.

Unlike Java, namespaces…

● don’t have an equivalent to package-private visibility.
● aren’t bound to directory names.
● can be nested within each other in a single file.
● can be split up within a single file or across multiple files.
● must explicitly choose what is visible via exporting.

To declare a namespace, use the namespace keyword followed by a name and curly braces ({
}). Everything within the curly braces will belong to that namespace. For example…

namespace a {
 var x = 10;
 namespace b {
 var y = x;

 class C {
 f: number = 1;
 }

 }

}

NOTE: Code that isn’t explicitly under a namespace is put under the global namespace.
I’m guessing this is equivalent to adding your classes under the default package in Java.

Exporting
To export some part of a namespace, you need to explicitly export it using the export keyword. If
you don’t export it, it won’t be visible (not even to itself -- see Splitting section). For example...

namespace a.b {
 export var z = 10;
}

Importing
Once exported, you can use it directly but it’s much more common to use the import keyword to
get shorthand access (very similar to Java import).

For example…

import z = a.b.z;
console.log(z);

If the file your importing/using in is different from your the file you’re exporting from, you’ll need
to add a reference to the typescript file that you’re exporting from. Otherwise, the TypeScript
compiler won’t know where to look to get definitions for whatever it is you’re importing. For
example...

/// <reference path="a.b.ts" />

import z = a.b.z;
console.log(z);

Splitting
You can technically split a namespace up across multiple files (or across the same file). For
example…

namespace a {
 var x = 10;

 namespace b {
 var y = x;
 }

}

namespace a.b {
 var z = 20;
}

The problem with splitting is that you don’t get access to stuff from the other splits unless you
explicitly export those items as well as the namespace itself. For example, in the last
namespace block of the above example, we wouldn’t be able to access the x or y vars unless
they were explicitly exported.

If we wanted to gain access in the bottom split, we would need to export the relevant bits as
such…

namespace a {
 var x = 10;
 export namespace b {
 export var y = x;
 }

}

namespace a.b {
 export var z = a.b.y;
}

console.log(a.b.z);

Spreading
Spreading spreads the contents of an array out, such that you can feed it into a function that
expects parameters or used for prepending/appending to another array.

NOTE: This seem to be a niche feature?

For example…

var x: number[] = [1, 2, 3]

// params MUST BE OPTIONAL or spreading for func params will error

function f(a?: number, b?: number, c?:number): void {
 console.log(`${a} ${b} ${c}`);

}

f(...x);

console.log([9,10,...x]);
console.log([...x,9,10]);

~/test $ node helloWorld.js

1 2 3

[9, 10, 1, 2, 3]

[1, 2, 3, 9, 10]

NOTE: If spreading to pass into a function, the arguments taking in the spreaded values
must be optional. This is because the array could be shorter than the number of
parameters, so any parameters which there aren’t values for will be marked as
undefined.

Destructuring
Destructing automatically pulls pieces of an array or object into individual variables.

NOTE: This seem to be a niche feature?

In the following example, a will contain the first element and be will contain the second
element...

var myArray: number[] = [3, 2, 1, 0, -1];
var [a, b] = myArray;

console.log(a);
console.log(b);

If you want to dump the remainder into a third variable, you can use rest parameters. In the
following example, c will be an array containing the remaining elements…

var myArray: number[] = [3, 2, 1, 0, -1];
var [a, b, ...c] = myArray;

console.log(a);
console.log(b);
console.log(c);

~/test $ node helloWorld.js

3

2

[1, 0, -1]

NOTE: The rest parameter here doesn’t require a type with a [] like it does for functions?
This may be a spread operator and not a rest parameter??

You can do the same thing with objects, but your variable name must map to the field name
you’re pulling out. For example…

class C {
 public xField: number = 10;
 public yField: number = 20;
 public zField: number = 30;
}

var c = new C();
var { xField, yField } = c;

console.log(xField);
console.log(yField);

The names have to map to the fields in the object, or you can explicitly name the fields you want
to place in each variable by using the following syntax…

class C {
 public xField: number = 10;
 public yField: number = 20;
 public zField: number = 30;
}

var c = new C();
var { "xField": x, "yField": y } = c;

console.log(x);
console.log(y);

Decorators
Decorators are TypeScript’s version of Java’s annotations. They can be attached to..

● classes
● class methods
● class properties (fields / accessors)
● function parameters

NOTE: To use decorators, you must enable it in the compiler via the
experimentalDecorators - add it to tsconfig.json.

Decorators are implemented as plain TypeScript functions. The parameters of those functions
differ based on what the decorator is for (e.g. class vs class method), but you almost always get
access to the structure of whatever it is you’re annotating. You can do all kinds of bizarre things
thanks to Javascript’s loose nature: extend or remove or change functionality, rename class
fields and methods, print messages, etc..

Class
Here’s an example of how to declare a decorator for a class and apply it…

function fancyDecorator(target: Function) {
 console.log("dec was hit!")
}

@fancyDecorator

class MyClass {
 x: number;
 y: number;
}

The target parameter takes in a Function, which is the constructor function of the class being
decorated.

If you want your decorator to take in parameters, you have to declare your decorator function as
a factory. In the following example, the decorator from above has been modified to take in a
single string and output it when its applied…

function fancyDecorator(name: string) {
 return function(target: Function) {
 console.log(`dec was hit with name ${name}! ̀)
 }

}

@fancyDecorator('fancyNameHere')
class MyClass {
 x: number;
 y: number;
}

~/test $ node helloWorld.js

dec was hit with name fancyNameHere!

Methods and Accessors
The way to declare a method decorator is similar to a class decorator, except that the
parameters are slightly different…

function methodDec(target: any, prop: string, desc: PropertyDescriptor) {
 console.log(`dec was hit with ${prop} and ${desc}`);
}

class MyClass {
 x: number;
 y: number;

 @methodDec
 myMethod(x: string) { }
}

~/test $ node helloWorld.js

dec was hit with myMethod and [object Object]

In the case of method decorators, the target parameter can be either a constructor (if the
method is a static method) or the prototype of the class (if the method is an instance method).
That’s why it’s set to take in any type.

If you want the decorator to take in parameters, use a factory method just like with the class
decorators…

function methodDec(str: string) {
 return function(target: any, prop: string, desc: PropertyDescriptor) {
 console.log(`dec was hit with ${prop} and ${desc} -- ${str}`);
 }

}

class MyClass {
 x: number;
 y: number;
 @methodDec('teeeeeeeeeest')
 myMethod(x: string) { }
}

~/test $ node helloWorld.js

dec was hit with myMethod and [object Object] -- teeeeeeeeeest

Fields
The way to declare a field decorator is similar to a class decorator, except that the parameters
are slightly different…

function fieldDec(target: any, propKey: string) {
 console.log(`dec was hit with ${propKey}`);
}

class MyClass {
 @fieldDec
 x: number;
 @fieldDec
 y: number;
}

~/test $ node helloWorld.js

dec was hit with x

dec was hit with y

In the case of field decorators, the target parameter can be either a constructor (if the method is
a static method) or the prototype of the class (if the method is an instance method). That’s why
it’s set to take in any type.

If you want the decorator to take in parameters, use a factory method just like with the class
decorators…

function fieldDec(str: string) {
 return function(target: any, propKey: string) {
 console.log(`dec was hit with ${propKey} -- ${str}`);
 }

}

class MyClass {
 @fieldDec('this is for the x field')
 x: number;
 @fieldDec('this is for the y field')
 y: number;
}

~/test $ node helloWorld.js

dec was hit with x -- this is for the x field

dec was hit with y -- this is for the y field

Modules
Modules are pretty much the same thing as namespaces, but external to your application. For
example, JQuery would probably be in its own namespace and be its own module.

The difference is between namespaces and modules is that modules may have other modules
as dependencies. Those dependencies may also have dependencies, and so on. With
TypeScript modules, all the dependencies in the tree get resolved and loaded up in the correct
order.

NOTE: Namespaces were also called modules in older versions of TypeScript. These
types of modules were called external modules, while namespaces were called internal
modules. It sounds like namespaces have been deprecated in favour of modules.

The way modules get loaded up is dependent on which module system TypeScript’s compiler is
setup to use. The module system used by most people seems to be commonjs (system used by
NodeJS). Here’s an example tsconfig.json file…

{

 "compilerOptions": {
 "target": "es5",
 "module": "commonjs",
 "sourceMap": true
 }

}

NOTE: If you’re compiling for a browser, you want to set the module format to either amd
and load it up using Require.js, or system and load it up using SystemJS. If you’re
compiling for Node, stick with commonjs.

Exporting
You create/export a module just by exporting something at the top level using the export
keyword. For example…

export namespace a.b {
 export var z = 10;
}

You can also have a module that only exports a single unnamed class or interface. This is
called a default export and is identified by export default keywords. For example…

export default class {

 field1: string;
 field2: number;
};

Importing
You can import a module by using import and require(filename), where the file you’re requiring
exports something at the top-level (see above section). For example…

import myModule = require("./a.b");
console.log(myModule.a.b.z);

NOTE: Notice how /// <reference path="a.b.ts" /> isn’t needed here. It seems to pick out
the type information on its own? Also, notice how just like how you use require() just like
in NodeJS -- the file extension (.ts in this case) has been removed.

You can also import using the following syntax, which will import specific items from a module...

import { a } from "./a.b";
console.log(a.b.z);

Or, this syntax, which will import everything from a module…

import * as myModule from "./a.b";
console.log(myModule.a.b.z);

NOTE: The “import * as” syntax in the example above won’t work for default exports. If
you use it, you need to use myModule.default to access the interface/class being
exported.

Interfacing with Javascript
In certain cases, you may be …

● pulling in raw Javascript instead of a TypeScript module.
● your code is for a platform that gives you access to a bunch of global variables.

Ambient Declarations/Definitions
The problem with this is that the TypeScript compiler doesn’t know about things that were never
declared. For example, if your code is targeting a browser, you’ll most likely be pulling in
JQuery. If you try to use JQuery’s $ variable outright, the TypeScript compiler will complain
because it won’t know that $ was declared globally by JQuery.

You can use ambient declarations to work around this issue. To setup a variable as an ambient
declaration, use the declare keyword. For example…

declare var $: any;

var x:string = $(".div").text();

Ambient declarations tell the TypeScript compiler that the variable has been declared
somewhere outside of TypeScript and prevents the TypeScript compiler from doing any checks
against it.

NOTE: There’s also a feature called ambient definitions which will wrap things as a
module? The syntax seems to be declare module modulename { ... }, where … contains
the a list of things that get exported using the export keyword. It seems to be how most
type definitions are provided now?

Type Definitions
In addition to ambient declarations, you can also provide a type definition file. Type definition
files define all the function signatures/variables/types/etc.. that TypeScript needs to make sure
your usage of the ambient declaration is correct + allows your IDE to provide functionality like
Intellisense. For example…

/// <reference path="jquery.d.ts" />

declare var $: JQueryStatic;
$('div').text('HI!');

NOTE: Type definition files always seem to have a .d.ts extension.

It looks like most type definitions are now provided as ambient definitions (see note in previous
section), so after providing the triple dash reference path, you would pull them in as if you’re
importing any other module.

To automatically install type definitions for a package, you can use npm install

@types/namehere. For example…

npm install @types/lodash

+ @types/lodash@4.14.88

added 1 package in 1.7s

See http://www.typescriptlang.org/docs/handbook/declaration-files/consumption.html for more
information.

NOTE: The repo for type definitions is at
https://github.com/DefinitelyTyped/DefinitelyTyped. There was a command line tool that
you could use to automatically manage type definition files from this repo called tsd, but
that was deprecated in favour of another tool called typings. Typings also ended up
being deprecated in favour of using the npm directly (method shown above).

TSLint
TSLint is a TypeScript linting tool, similar to checkstyle/findbugs/PMD for Java. The following is
a guide that shows how to install and run tslint, as well as integrate it with VSCode.

Use npm to install TSLint…

~/test $ sudo npm install tslint typescript -g

[sudo] password for user:

/usr/bin/tslint -> /usr/lib/node_modules/tslint/bin/tslint

/usr/bin/tsc -> /usr/lib/node_modules/typescript/bin/tsc

/usr/bin/tsserver -> /usr/lib/node_modules/typescript/bin/tsserver

+ tslint@5.8.0

+ typescript@2.6.2

updated 2 packages in 4.076s

NOTE: You can also install locally instead of globally. Take out the -g and add a
--save-dev to have it saved as a devDependency in your package.json.

Once installed, you need to create a new tslint.json configuration using the tslint --init. The
command won’t output anything to the shell, but you will get a new tslint.json file in your current
directory…

{

 "defaultSeverity": "error",
 "extends": [
 "tslint:recommended"
],

http://www.typescriptlang.org/docs/handbook/declaration-files/consumption.html
https://github.com/DefinitelyTyped/DefinitelyTyped

 "jsRules": {},
 "rules": {},
 "rulesDirectory": []
}

To lint your TypeScript files via command-line, you can run tslint globpattern. For example…

~/test $ tslint *.ts

ERROR: a.b.ts[2, 5]: The class property 'field1' must be marked either

'private', 'public', or 'protected'

ERROR: a.b.ts[3, 5]: The class property 'field2' must be marked either

'private', 'public', or 'protected'

ERROR: a.b.ts[4, 2]: Unnecessary semicolon

ERROR: helloWorld.ts[2, 12]: non-arrow functions are forbidden

ERROR: helloWorld.ts[3, 9]: Calls to 'console.log' are not allowed.

ERROR: helloWorld.ts[4, 6]: Missing semicolon

ERROR: helloWorld.ts[6, 1]: trailing whitespace

ERROR: helloWorld.ts[7, 2]: statements are not aligned

ERROR: helloWorld.ts[8, 15]: ' should be "

ERROR: helloWorld.ts[9, 5]: The class property 'x' must be marked either

'private', 'public', or 'protected'

ERROR: helloWorld.ts[10, 15]: ' should be "

ERROR: helloWorld.ts[11, 5]: The class property 'y' must be marked either

'private', 'public', or 'protected'

ERROR: helloWorld.ts[12, 3]: file should end with a newline

A better way to lint your files is directly in your IDE. Most IDEs come with TSLint support, either
built-in or via extensions. If you’re using VSCode, there’s a tslint extension that you can install
and use…

Once you install it, if you go to the problems tab on the bottom pane of VSCode you’ll see all the
tslint errors for your open files.

For each error, if you move the carrot to where the error is a little light-bulb will show up. You
can click that lightbulb and it’ll give you ways to fix the problem identified by the linter…

This list will refresher as you make changes and save.

