
Protocol Buffers 3
Introduction

Setup

Definition
Import
Package
Message

Field
Field Rule
Field Name
Field Tag
Field Type

Oneof
Map
Any

Enumeration
Service

Versioning
Add Fields
Remove Fields

Compiling
C++
Java

Maven Plugin
Gradle Plugin

Python

Gotchas and Best Practices
Best Practices
Naming Conventions
Nesting for Organization
Speed and Space Consumption
Languages Types vs Protobuf Types

gRPC Basics
Setup
Service Implementation

Server Launch
Client Launch

Introduction
“Protocol Buffers” is a combination toolset and format that facilitates the storing and transferring
of data in a platform neutral way. It’s similar to formats like JSON/YAML/XML, except that it’s
been specifically optimized for transferring data: faster to serialize/deserialize, serialized form
takes up less space.

Like other existing formats, protocol buffers…

● are structured hierarchically

Unlike other existing formats, protocol buffers …

● are in binary format.
 (not human readable text)

● require structs to be known at design-time.
 (structs need to be defined beforehand and are strongly typed)

● support versioning of structs.
 (structs can be updated while still being backwards compatible)

● produce tightly coupled implementations.
 (unlike JSON/XML/etc.., there is no generic library that reads/writes generically)
 (custom code is generated to read/write your structs in each supported language)

The toolset provides support for the languages C++, Java, Python, Go, C#, etc..

NOTE: There are 2 publicly available releases: proto2 and proto3. This document
focuses on proto3 (latest), which is not compatible with proto2.

Setup
The most generic way to get set up is to download the latest binaries from
https://github.com/protocolbuffers/protobuf/releases…

$ wget
https://github.com/protocolbuffers/protobuf/releases/download/v3.6.1/protoc

-3.6.1-linux-x86_64.zip

$ unzip protoc-3.6.1-linux-x86_64.zip -d protoc

NOTE: The binaries are usually listed at the bottom of the list of released files.
Everything up top is source code. For Linux, search specifically for “-linux-x86_64.zip”

https://github.com/protocolbuffers/protobuf/releases

Once installed, you’ll use the “protoc” binary to compile your structures into source code in
whatever languages you’re working in…

$ cat > tutorial.proto
syntax = "proto3";

package tutorial;

option java_package = "com.example.tutorial";

message Person {

 string name = 1;

 int32 id = 2;

 string email = 3;

}

$ protoc/bin/protoc --java_out=. ./tutorial.proto
$ head ./com/example/tutorial/Tutorial.java
// Generated by the protocol buffer compiler. DO NOT EDIT!

// source: tutorial.proto

package com.example.tutorial;

public final class Tutorial {

 private Tutorial() {}

 public static void registerAllExtensions(

 com.google.protobuf.ExtensionRegistryLite registry) {

 }

In addition, there’s also an official Gradle plugin
(https://github.com/google/protobuf-gradle-plugin) and a non-official Maven plugin
(https://www.xolstice.org/protobuf-maven-plugin).

Definition
Protocol buffers are defined in files with a “.proto” extension and compiled to source code using
the “protoc” binary (see Setup section).

An example definition file...

syntax = "proto3";

import "otherproject/other.proto";

package tutorial;
option java_package = "com.example.tutorial";

https://github.com/google/protobuf-gradle-plugin
https://www.xolstice.org/protobuf-maven-plugin

message User {
 string name = 1;
 uint32 age = 2;
 repeated string emails = 3;
}

The first line in the above example sets a syntax to “protobuf3”. We need to do this for all of our
definition files. It tells the “protoc” compiler to use the 3rd version of protocol buffers.

NOTE: If left unset, it targets version 2.

NOTE: Language specs for protocol buffers can be found at
https://developers.google.com/protocol-buffers/docs/reference/proto3-spec.

Import
A definition file can pull in other definition files using the import keyword. Access will be granted
to everything that’s directly defined in the imported file. That means that if the file being imported
has imports of its own, those imports won’t be made available to the parent. For example, take
the following 3 files…

// a.proto

syntax = "proto3";
import "b.proto";
message A {

 B val=1;
 C val2=2;
}

// b.proto

syntax = "proto3";
import "c.proto";
message B {

 C val=1;
}

// c.proto

syntax = "proto3";
message C {

 uint32 val=1;
}

https://developers.google.com/protocol-buffers/docs/reference/proto3-spec

A imports B, and B imports C. That means that A has direct access to the items in B, but not to
the items in C. If you tried to compile this, you’d get the following error…

a.proto:5:5: "C" seems to be defined in "c.proto", which is not imported by

"a.proto". To use it here, please add the necessary import.

To work around this, you can either directly import C into A…

// a.proto

syntax = "proto3";
import "b.proto";
import "c.proto"; // notice that A is now directly importing C
message A {

 B val=1;
 C val2=2;
}

, or make it so that B includes C’s items whenever it’s imported (public import)...

// b.proto

syntax = "proto3";
import public "c.proto"; // notice the public keyword added here
message B {

 c val=1;
}

NOTE: There’s also the option to have a “weak” import. Weak imports are imports that
are allowed to be missing? Unsure how it all works and they aren’t mentioned in the
official docs, but I found this on stack overflow: https://stackoverflow.com/q/33933397.

NOTE: Import paths are ALWAYS relative. You cannot give an absolute path and you
paths cannot start with ./ or ../ .

Package
Packages are like namespaces/packages in programming languages -- they’re used to prevent
name conflicts. You can use the package keyword to specify that your definition file belongs to
some package. For example…

// a.proto

syntax = "proto3";
package company.serviceA;
import "b.proto";
message Msg{

 serviceB.Msg val=1;

https://stackoverflow.com/q/33933397

}

// b.proto

syntax = "proto3";
package company.serviceB;
message Msg {

 uint32 val=1;
}

The code generated by the “protoc” compiler will appropriately convert the package structure to
the targeted languages. For example, generated C++ code will be wrapped in the matching
namespace hierarchy while generated Java code will contain the appropriate package
declarations and sit in the appropriate directories.

Certain languages have more complex naming standards for packages. For example, the C++
namespace company.serviceA may be workable but for Java you’ll likely want a package name
like com.company.serviceA.networking.protobuf. You can do this using options. For example…

// a.proto

syntax = "proto3";
package company.serviceA;
option java_package = "com.company.serviceA.networking.protobuf";
import "b.proto";
message Msg {

 serviceB.Msg val=1;
}

NOTE: See https://developers.google.com/protocol-buffers/docs/proto3#packages

Message
Messages are the structures that get serialized/deserialized. For example...

message User {
 option (my_option1) = true;
 option (my_option2) = 5;

 string name = 1;
 uint32 age = 2;
 repeated string emails = 3;
}

https://developers.google.com/protocol-buffers/docs/proto3#packages

A message contains zero or more fields that can be set/get at runtime. Messages can also have
options set on them (accessible programmatically at runtime).

NOTE: Make sure to respect naming conventions when naming your message.

NOTE:According to the docs, message options are an advanced feature. Most users will
never need them.

NOTE: Message can nest other messages as well as enumerations.

Field
Message fields are comprised of 4 elements:

● rule (not required)
● type
● name
● tag
● options (not required)

For example…
repeated uint64 vals = 1 [packed=true] ;

NOTE: In the old version (v2), you could specify a default value as an option. If no
default was provided, it would internally assign the default to the zero value (e.g. 0 for
integers/floats, empty string, empty byte array, etc..). In v3, this is no longer a thing. You
cannot provide a default and if you leave a field unset it will default to the value zero.

Field Rule
Field rules define how a field is to be treated. If a field is set to “repeated”, the field represents
an array of values that share the same type. If not set, it’s a single value of type.

NOTE: Remember that we’re dealing with v3 of protocol buffers. In the old version (v2),
the field rules you could specify where optional/required/repeated. Optional/required
defined whether a value must be provided for that field. In v3, this is no longer a thing: all
fields are optional.

Field Name
Field names should be all lowercase letters where words are separated by underscores.

NOTE: See naming conventions.

Field Tag
A field tags is the unique identifier for a field. While the field name is the human-friendly
identifier of a field, the field tag is what’s used internally. For example…

message 3dPoint {
 double x = 1;
 double y = 2;
 double z = 3;
}

message 2dPoint {
 double x = 1;
 double y = 2;
}

This is a required part of the field definition -- it must be explicitly declared. Note that field tags…

● must be an integers in the range [1, 229-1] but not between [19000, 19999].
● must be unique to the message they’re encapsulated in.

These tags are are used to identify fields when serializing/deserializing. Because variable-length
encoding is used to send these tags, you should aim to…

● keep tag numbers as small as possible.
● order them such that the fields most likely to be set have the smallest tag numbers

(unset fields aren’t serialized).

NOTE: Tags are likely encoded as 32-bits, the first 3 bits of which are likely used as part
of the variable length encoding (hence the range [1, 229-1]) and the range [19000, 19999]
used for internal purposes.

Field Type
Supported types include built-in types (e.g. string or int64), enumerations, and messages. For
example…
Example of fields in a message…

message 3dPoint {
 double x = 1;
 double y = 2;
 double z = 3;
 UvCoordinates uvs = 4; // UvCoordinates is another message
 BufferType e = 5; // BufferType is an enum
}

The following built-in types are provided...
● double → double-precision float
● float → single-precision float
● int32 → signed 32-bit integer
● int64 → signed 64-bit integer
● uint32 → unsigned 32-bit integer
● uint64 → unsigned 64-bit integer
● sint32 → signed 32-bit integer (encoded differently than int32)
● sint64 → signed 32-bit integer (encoded differently than int64)
● fixed32 → unsigned 32-bit integer (encoded differently than uint32)
● fixed64 → unsigned 64-bit integer (encoded differently than uint64)
● sfixed32 → signed 32-bit integer (encoded differently than int32/sint32)
● sfixed64 → signed 64-bit integer (encoded differently than int64/sint64)
● bool → boolean
● string → UTF-8 or 7-bit ASCII string
● bytes → variable number of bytes

NOTE: See https://developers.google.com/protocol-buffers/docs/proto3#scalar.

NOTE: Obviously, double/float are IEEE-754 formats and all signed integers are two’s
complement.

Notice there are several signed/unsigned integer types (e.g. int32 vs sint32 vs sfixed32). The
difference between them is how they’re encoded when serialized. Which type you use is
dependent on your use case. For example, if you want your field’s encoding to...

● always be serialized to 32-bits/64-bits, use sfixed32/sfixed64.
● be optimized for positive numbers, use int32/int64.
● be optimized for negative numbers, use sint32/sint64.

Oneof
A oneof groups multiple message fields in such a way that at most only 1 of the fields can be
set. The source code generated for a oneof ensures compliance and serializes in a way that
makes it more efficient (only 1 placeholder in memory for all fields). For example…

message A {
 uint32 item_a = 1;
 oneof item_b {
 string item_b_1 = 2;
 int64 item_b_2 = 3;
 double item_b_3 = 4;
 }

 uint32 item_c = 5;
}

https://developers.google.com/protocol-buffers/docs/proto3#scalar

In the above example, only one of the following items can be set: item_b_1, item_b_2, or
item_b_3. If you set one, the other 2 will get cleared out. The source code generated by “protoc”
for a oneof includes functionality that identifies which field was set. For example, generated
Java code for the above example will have a method called getItemBCase() .

NOTE: repeat field rule is not allowed for fields inside a oneof group.

Map
A map is a built-in helper that lets a single field hold on to multiple key-value pairings (similar to
a Java map). For example…

message A {

 uint32 item_a = 1;
 map<string, AInner> item_b = 2;
}

message AInner {

 uint32 f_1 = 1;
 uint32 f_2 = 2;
}

Maps have the following restrictions/gotchas:

● maps are not ordered -- don’t expect any particular order when iterating over a map.
● repeat field rule is not allowed for a map.
● key type for a map must be either a integer, bool, or string.

○ You cannot set enumerations or messages as key types.
○ You cannot set other built-in types (e.g. float, double, bytes) as the key type.

● entries without a value have undefined serialization behaviour (always set a value).

There is no restriction for what a value type can be, but just make sure you always set a value
(see last point in list above).

Any
The “Any” type is a special placeholder when the definition of the type isn’t known at
design-time. For example…

import "google/protobuf/any.proto"; // MUST HAVE THIS IMPORT

message A {

 uint32 a = 1;
 google.protobuf.Any b = 2; // Any TYPE MUST BE FULLY QUALIFIED

}

NOTE: If you’re seeing messages about any.proto not being found, you likely have a bad
install. Install protocol buffers using the official binaries and it’ll work. Do not use the
distribution from apt or yum or whatever.

In the above example, field b is an “Any” type. At runtime, you’ll be able to convert field b to/from
a real type using the Pack() and Unpack() methods. For example, in Java…

MessageB messageB = ...;

// to set

Any any = Any.pack(messageB);
messageA.setB(any);

// to get

messageB = messageA.getB().unpack(MessageB.class);

An “Any” message can hold on to a URL that uniquely identifies the type of serialized message.

NOTE: Unsure why a URL is used to identify types? The doc seems unclear. See
https://developers.google.com/protocol-buffers/docs/reference/java/com/google/protobuf/
Any.html#getTypeUrl-- and
https://developers.google.com/protocol-buffers/docs/reference/java/com/google/protobuf/
Any.html#pack-T-java.lang.String-.

Enumeration
Enumerations are just like normal enumerations in most programming languages (e.g. Java).
For example…

enum CardType {
 option allow_alias = true;

 SPADE = 0,
 DIAMOND = 1,
 HEART = 2,
 CLUB = 3 [opt1="value1", opt2="value2"]
}

Enumerations can have options on both the enumeration as well as the enumerated values.
Just like messages, users should rarely ever need to use them.

https://developers.google.com/protocol-buffers/docs/reference/java/com/google/protobuf/Any.html#getTypeUrl--
https://developers.google.com/protocol-buffers/docs/reference/java/com/google/protobuf/Any.html#getTypeUrl--
https://developers.google.com/protocol-buffers/docs/reference/java/com/google/protobuf/Any.html#pack-T-java.lang.String-
https://developers.google.com/protocol-buffers/docs/reference/java/com/google/protobuf/Any.html#pack-T-java.lang.String-

NOTE: Make sure to respect naming conventions when naming your enumeration. Your
enumerated values should be all uppercase and where words are separated by
underscores. The enumeration itself should be camel case.

NOTE: It’s recommended that you have one of your enumerated values set to 0. The
default value for an enumeration type is 0.

NOTE: Enumerations can be nested inside of messages. See messages.

Service
Service are interfaces that use your messages. They’re typically used for generating interfaces
for RPC implementations. For example…

Service MyService {
 option allow_alias = true;

 rpc Method (RequestMsg) returns (ResponseMsg);
 rpc MethodStreamResp (RequestMsg) returns (stream ResponseMsg);
 rpc MethodStreamReq (stream RequestMsg) returns (ResponseMsg);
 rpc MethodStreamBi (stream RequestMsg) returns (stream ResponseMsg);
 rpc MethodWithOptions (RequestMsg) returns (ResponseMsg) {
 option my_option = "hi";
 }

}

Notice that options can be placed on both the service and the individual method signatures on
that service. Individual method signatures…

● must accept exactly 1 message type (must be msg, can’t be built-in/enum/void/etc...).
● must return exactly 1 message type (must be msg, can’t be built-in/enum/void/etc...).
● can be set to accept single requests / deliver single responses.
● can be set to accept a stream of requests / deliver a single response.
● can be set to accept single requests / deliver a stream of responses.
● can be set to accept a stream of requests / deliver a stream of responses.

The interfaces generated for these services can be used standalone, but they were designed to
be used by some higher-level layer -- gRPC is the commonly used higher-level layer (brief
introduction in the gRPC section).

NOTE: Make sure to respect naming conventions when naming your service. Your
service as well as methods should be camelcase.

NOTE: MethodStreamReq in the example above stream multiple requests and
generates a single response. gRPC buffers the requests internally until everything
arrives before allowing you to compute a response. This isn’t the case with
MethodStreamBi -- you can start sending responses right away.

NOTE: Recall the “repeated” field rule. It only applies to fields in a message, not to rpc
inputs/outputs. However, you can use stream (which is kinda like repeat) OR you can
wrap input/output message types in a secondary message that repeats. For example…
message MethodResponse {
 uint32 unix_timestamp = 0;
 string name = 1;
 bool whatever = 2;
}
message MethodResponseWrapper {
 repeat MethodResponse resp = 0;
}

Versioning
As your product grows and goes through revisions, its common for the structure of your protobuf
messages to change. Fields are typically added and sometimes replaced. For example, you
may have initially designed your message like this…

message User {
 uint32 id = 1;
 string email = 2;
}

but due to changes in requirements they now have to be like this...

message User {
 uint32 id = 1;
 Email email = 3;
}

message Email {
 string alias = 1;
 string domain = 2;
}

There are several things to be aware of when updating your protocol buffers.

NOTE: The subsections below focus on adding/removing fields, but you can also change
types on a field (this is an advanced feature that you likely shouldn’t ever have to use?).

See https://developers.google.com/protocol-buffers/docs/proto3#updating for more
information.

Add Fields
Adding a field is straightforward: add it into your message just as you would any other field. For
example, an existing message...

message User {
 uint32 id = 1;
 string email = 2;
}

can be revised to add a new field…

message User {
 uint32 id = 1;
 string email = 2;
 string address = 3; // new field
}

If you serialize in the old format but deserialize in the revised format, the address field won’t
have any data associated with it -- it will default to zero value on deserialization (e.g. 0 for
integers/floats, empty string, empty byte array, etc..). In the example above, the address field
will default to an empty string.

If you serialize in the revised format but deserialize in the old format, the address field will be
missing -- it will get treated as an unknown field. Depending on the version of protocol buffers
you’re using, unknown fields may be retained or silently discarded.

NOTE: See https://developers.google.com/protocol-buffers/docs/proto3#unknowns.

Remove Fields
Removing a field is straight forward: delete it from your field and reserve the field tag and name
so they can’t be reused in future revisions of the message. For example…

message User {
 uint32 id = 1;
 string email = 2;
 string address = 3;
}

can be revised to remove a field…

message User {

https://developers.google.com/protocol-buffers/docs/proto3#updating
https://developers.google.com/protocol-buffers/docs/proto3#unknowns

 uint32 id = 1;
 string email = 2;
 reserved 3; // reserve removed field tag 3
 reserved "address"; // reserve removed field name address
}

NOTE: If reserving multiple field names/tags, you can use a comma delimited list of
items. If reserving a range of field tags, you can use the “to” keyword. For example:
reserved 1, 3, 10, 100 to 150, 160;

The behaviour of removed fields is similar to added fields.

If you serialize in the old format but deserialize in the revised format, the address field will be
missing -- it will get treated as an unknown field. Depending on the version of protocol buffers
you’re using, unknown fields may be retained or silently discarded.

If you serialize in the revised format but deserialize in the old format, the address field won’t
have any data associated with it -- it will default to zero value on deserialization (e.g. 0 for
integers/floats, empty string, empty byte array, etc..). In the example above, the address field
will default to an empty string.

NOTE: See https://developers.google.com/protocol-buffers/docs/proto3#unknowns.

Compiling
The “protoc” compiler allows you to generate code for different languages. Each language has a
unique set of options.

NOTE: Officially supported languages are C++, Java, Python, Go, and C#. It also has
alpha support for Ruby, C#, ObjC, Javascript, and PHP. The subsections below only
cover the first 3 main languages: C++, Java, and Python. For the others, see
https://developers.google.com/protocol-buffers/docs/reference/overview.

C++
To generate C++ code, use the cpp_out argument…

$ /protoc/bin/protoc --cpp_out=./dst_cpp a.proto

Generated C++ code can be…

● optimized for speed, code size, or be linked against a smaller protobuf library (less
functionality) via the optimize_for option.

https://developers.google.com/protocol-buffers/docs/proto3#unknowns
https://developers.google.com/protocol-buffers/docs/reference/overview

● made to make more efficient use of memory by memory pooling via the
cc_enable_arenas option.

syntax = "proto3";

option optimize_for = SPEED; // or CODE_SIZE or LITE_RUNTIME
option cc_enable_arenas = true;

message User {

 string name = 1;
 uint32 age = 2;
 string email = 3;
}

Java
To generate Java code, use the java_out argument…

$ /protoc/bin/protoc --java_out=./dst_java a.proto

The generated code has a dependency on the protobuf lib…

<dependency>
 <groupId>com.google.protobuf</groupId>
 <artifactId>protobuf-java</artifactId>
 <version>3.6.1</version>
</dependency>

Generated Java code can be…

● optimized for speed, code size, or inherit from a reduced protobuf library (less
functionality) via the optimize_for option.

● generated with a package hierarchy more appropriate to Java via the java_package
option.

● generated with a custom outer classname via java_outer_classname option -- by default
all classes in a proto file are bundled inside of a single Java class called
ProtoFilename.java (where ProtoFilename is the filename of your .proto).

syntax = "proto3";
package company.serviceA;

option optimize_for=SPEED; // or CODE_SIZE or LITE_RUNTIME
option java_package="com.company.serviceA";

option java_outer_classname = "UserDomain";

message User {
 string name = 1;
 uint32 age = 2;
 Email email = 3;
}

message Email {
 string alias = 1;
 string domain = 2;
}

Maven Plugin
Instead of using protoc directly, it’s possible to generate code through a maven plugin…

<build>
 <extensions>
 <extension>
 <groupId>kr.motd.maven</groupId>
 <artifactId>os-maven-plugin</artifactId>
 <version>1.6.0</version>
 </extension>
 </extensions>
 <plugins>
 <plugin>
 <groupId>org.xolstice.maven.plugins</groupId>
 <artifactId>protobuf-maven-plugin</artifactId>
 <version>0.6.1</version>
 <executions>
 <execution>
 <goals>
 <goal>compile</goal>
 <goal>test-compile</goal>
 </goals>
 </execution>
 </executions>
 <configuration>

<protocArtifact>com.google.protobuf:protoc:3.4.0:exe:${os.detected.classifi
er}</protocArtifact>
 </configuration>

 </plugin>
 </plugins>
</build>

<dependencies>
 <dependency>
 <groupId>com.google.protobuf</groupId>
 <artifactId>protobuf-java</artifactId>
 <version>3.6.1</version>
 </dependency>
</dependencies>

NOTE: Proto files go under src/main/proto.

Gradle Plugin
Instead of using protoc directly, it’s possible to generate code through a maven plugin…

buildscript {
 repositories {
 mavenCentral()

 }

 dependencies {
 classpath 'com.google.protobuf:protobuf-gradle-plugin:0.8.6'
 }

}

apply plugin: 'java'
apply plugin: 'com.google.protobuf'

plugins {

 id "com.google.protobuf" version "0.8.6"
 id "java"
}

dependencies {
 compile 'com.google.protobuf:protobuf-java:3.6.1'
}

NOTE: Proto files go under src/main/proto.

NOTE: See https://github.com/google/protobuf-gradle-plugin for more info.

https://github.com/google/protobuf-gradle-plugin

Python
To generate Python code, use the python_out argument…

$ /protoc/bin/protoc --python_out=./dst_py a.proto

NOTE: There aren’t any Python options worth mentioning.

Gotchas and Best Practices

Best Practices
● Always use proper style / naming conventions.

→ protoc will convert to the appropriate naming convention of the destination language.
● Never change field tags once deployed.

→ other systems may break because they’ll be expecting the old field tags.
● Reserve the tags and names of removed fields.

→ reserving names prevents you from reusing the name in future revisions, meaning
you won’t break your source code.
→ reserving tags prevents you from reusing the tag in future revisions, meaning that you
won’t break existing systems that may still be using them.

Naming Conventions
● Messages, enumerations, and services/methods should be named in camelcase.
● Message fields should be all lowercase where words are separated by underscores.
● Enumerated values should be all uppercase where words are separated by underscores.

So long as this naming convention is respected, the protoc compiler will convert the name to the
correct format for the language being output. So for example, a field named world_coordinates
would get compiled to Java as 2 methods: getWorldCoordinates() and setWorldCoordinates().

NOTE: See https://developers.google.com/protocol-buffers/docs/style.

Nesting for Organization
You can nest enumerations and messages inside of other messages. For example…

message a {
 uint32 item_a = 1;

https://developers.google.com/protocol-buffers/docs/style

 message a_inner {
 uint32 f_1 = 1;
 uint32 f_2 = 2;
 }

 enum my_type {
 A = 0;
 B = 1;
 C = 2;
 }

}

This is useful for organization. For example, if you have an enum that’s only used by a single
message, it may make sense to tie them together.

Speed and Space Consumption
It isn’t always the case that protocol buffers are the fastest and most space efficient solution.
For example, serialization of protocol buffers is slower in Javascript vs JSON serialization. The
serialized data is more space efficient with protocol buffers, but it’s still slower to generate.

The idea is that you have an interoperable format that SHOULD be faster.

Languages Types vs Protobuf Types
Not all protocol buffer types are supported by all languages. For example, protocol buffers offer
the type uint64 Neither Java nor Javascript support an unsigned 64-bit integer type.

The code generated by protocol buffers tries to work around this. For example, in…

● Java, uint64 is put into a long, which is signed but can still hold all 64-bits.
● Javascript, all 64-bit number types are put into a string.

NOTE: Remember that Java’s only numeric type is “number”, which translates to
IEEE-754 double format.

gRPC Basics
gRPC (short for Google RPC) is the standard way of implementing services. It essentially acts
as the transport layer for your protocol, leaving you to just implement the interface methods in
your services and spin up the server/clients.

Much like protocol buffers, gRPC code is generated using the “protoc” tool and isn’t bound to a
single language. gRPC can be used with multiple different programming languages, with each
language implementation being spec’d out for the norms of that language (e.g. uses common
libraries, coding patterns and idioms, etc..).

NOTE: The following subsections are specific to Java. If you’re dealing with another
language, it’s best to go over the guides for that language on the grpc website.

Setup
To have “protoc” generate gRPC code for Java, you add the grpc_out argument as well as
specify a special grpc plugin. The grpc_out argument points to the destination directory where
your generated gRPC-related Java files should go, while the plugin is some executable that
“protoc” uses internally for something (unsure what). For example…

$ /protoc/bin/protoc
 --grpc_out==./dst_java

 --java_out=./dst_java a.proto

 --plugin=protoc-gen-grpc=...\protoc-gen-grpc-java-?.?.?-windows-x86_64.exe

NOTE: You might have to get the protoc-gen-grpc plugin separately from the main
protoc package. You can find it on Maven under group:io.grpc
artifact:protoc-gen-grpc-java.

The Maven and Gradle plugins should both support gRPC. But you might have provide some
extra configuration options. For example, the plugin needs some configuration changes…

<plugin>
 <groupId>org.xolstice.maven.plugins</groupId>
 <artifactId>protobuf-maven-plugin</artifactId>
 <version>0.6.1</version>
 <executions>
 <execution>
 <goals>
 <goal>compile</goal>
 <!-- NEXT GOAL IS REQUIRED TO GENERATE GRPC -->

 <goal>compile-custom</goal>
 <goal>test-compile</goal>
 </goals>
 </execution>
 </executions>
 <configuration>

<protocArtifact>com.google.protobuf:protoc:3.4.0:exe:${os.detected.classifi
er}</protocArtifact>
 <!-- PLUGIN IS REQUIRED FOR GENERATING GRPC -->
 <pluginId>grpc-java</pluginId>

<pluginArtifact>io.grpc:protoc-gen-grpc-java:1.15.1:exe:${os.detected.class
ifier}</pluginArtifact>
 </configuration>
</plugin>

and you need to pull in the following dependencies to use gRPC in Java...

<dependency>
 <groupId>io.grpc</groupId>
 <artifactId>grpc-netty-shaded</artifactId>
 <version>1.16.1</version>
</dependency>
<dependency>
 <groupId>io.grpc</groupId>
 <artifactId>grpc-protobuf</artifactId>
 <version>1.16.1</version>
</dependency>
<dependency>
 <groupId>io.grpc</groupId>
 <artifactId>grpc-stub</artifactId>
 <version>1.16.1</version>
</dependency>
<!-- Javadocs generated for GRPC/Protobufs require the

javax.annotation.Generated, which is not provided in Java9 onward. -->

<dependency>
 <groupId>javax.annotation</groupId>
 <artifactId>javax.annotation-api</artifactId>
 <version>1.3.2</version>
</dependency>

NOTE: Remember that if you’re using either the Gradle or Maven plugins, your proto
files go under src/main/proto.

NOTE: For Gradle, there’s a difference for dependencies for Android vs non-Android
builds. See https://github.com/grpc/grpc-java for more info.

https://github.com/grpc/grpc-java

Service Implementation
gRPC generate stubs for your services. Imagine the following proto file…

syntax = "proto3";

package tutorial;
option java_package = "com.offbynull.grpctest.grpc";
option java_outer_classname = "GrpcTest";

message RequestMsg {
 string input = 1;
}

message ResponseMsg {
 string output = 1;
}

service CustomService {
 rpc Method (RequestMsg) returns (ResponseMsg);
 rpc MethodStreamResp (RequestMsg) returns (stream ResponseMsg);
 rpc MethodStreamReq (stream RequestMsg) returns (ResponseMsg);
 rpc MethodStreamBi (stream RequestMsg) returns (stream ResponseMsg);
 rpc MethodWithOptions (RequestMsg) returns (ResponseMsg);
}

The “protoc” compiler will generate stubs for the services that you can implement functionality
for in your code…

package com.offbynull.grpctest;

import com.offbynull.grpctest.grpc.CustomServiceGrpc;
import com.offbynull.grpctest.grpc.GrpcTest;
import io.grpc.stub.StreamObserver;

public class GrpcService extends CustomServiceGrpc.CustomServiceImplBase {
 @Override
 public void method(

 GrpcTest.RequestMsg request,

 StreamObserver<GrpcTest.ResponseMsg> responseObserver) {

 // do something here
 }

 @Override
 public void methodStreamResp(

 GrpcTest.RequestMsg request,

 StreamObserver<GrpcTest.ResponseMsg> responseObserver) {

 // do something here
 }

 @Override
 public StreamObserver<GrpcTest.RequestMsg> methodStreamReq(

 StreamObserver<GrpcTest.ResponseMsg> responseObserver) {

 // do something here
 }

 @Override
 public StreamObserver<GrpcTest.RequestMsg> methodStreamBi(

 StreamObserver<GrpcTest.ResponseMsg> responseObserver) {

 // do something here
 }

 @Override
 public void methodWithOptions(

 GrpcTest.RequestMsg request,

 StreamObserver<GrpcTest.ResponseMsg> responseObserver) {

 // do something here
 }

}

Notice how these methods…

● respond through StreamObserver, regardless of if it was set to send a single response or
a stream of responses.

● take in an actual object for single requests, but return a StreamObserver for stream of
requests.

The idea with this is that your implementation can be async.

If a single request / single response is expected, you can spin the work off to another thread and
return immediately while that thread works. Once that thread is finished, it should push out the
response to the response StreamObserver….

@Override

public void method(

 GrpcTest.RequestMsg request,

 StreamObserver<GrpcTest.ResponseMsg> responseObserver) {

 Runnable r = () -> {

 GrpcTest.ResponseMsg resp =GrpcTest.ResponseMsg.newBuilder()

 .setOutput("hi!")
 .build();

 responseObserver.onNext(resp);

 responseObserver.onCompleted();

 }

 new Thread(r).start();
}

If a stream of responses is expected, the idea is the same as a single response but you can
invoke the response StreamObserver multiple times...

@Override

public void methodStreamResp(
 GrpcTest.RequestMsg request,

 StreamObserver<GrpcTest.ResponseMsg> responseObserver) {

 Runnable r = () -> {

 GrpcTest.ResponseMsg resp =GrpcTest.ResponseMsg.newBuilder()

 .setOutput("hi!")
 .build();

 responseObserver.onNext(resp);

 responseObserver.onNext(resp);

 responseObserver.onNext(resp);

 responseObserver.onCompleted();

 }

 new Thread(r).start();
}

If a stream of requests is expected, you return a StreamObserver that gets invoked for each
request and you invoke the response StreamObserver once that work is complete…

@Override

public StreamObserver<GrpcTest.RequestMsg> methodStreamReq(
 StreamObserver<GrpcTest.ResponseMsg> responseObserver) {

 return new StreamObserver<GrpcTest.RequestMsg>() {
 @Override
 public void onNext(GrpcTest.RequestMsg value) {
 GrpcTest.ResponseMsg resp =GrpcTest.ResponseMsg.newBuilder()

 .setOutput("echo:" + value.getInput())
 .build();

 responseObserver.onNext(resp);

 }

 @Override
 public void onError(Throwable t) {
 // do something here to report and stop
 }

 @Override
 public void onCompleted() {
 responseObserver.onCompleted(); // call this when done
 }

 };

}

Server Launch
Starting and stopping a server is straight forward…

package com.offbynull.grpctest;

import io.grpc.Server;
import io.grpc.ServerBuilder;

public class App
{

 public static void main(String[] args) throws Exception
 {

 // start
 Server server = ServerBuilder

 .forPort(12345)
 // .useTransportSecurity(certPemFile, keyPemFile)
 .addService(new GrpcService()) // add implemented services
 .build()

 .start();

 // stop
 server.shutdown(); // or shutdownNow() to stop immediately
 server.awaitTermination();

 }

}

Client Launch
gRPC generates client stubs for your services. It’s your choice if you want to use the
synchronous or asynchronous variant, but methods that stream requests won’t be available in
the blocking stub…

package com.offbynull.grpctest;

import com.offbynull.grpctest.grpc.CustomServiceGrpc;
import com.offbynull.grpctest.grpc.GrpcTest;
import io.grpc.ManagedChannel;
import io.grpc.netty.shaded.io.grpc.netty.NettyChannelBuilder;
import io.grpc.stub.StreamObserver;

import java.util.concurrent.TimeUnit;

public class App
{

 public static void main(String[] args) throws Exception
 {

 ManagedChannel channel = NettyChannelBuilder

 .forAddress("localhost", 12345)
 // .sslContext(
 // GrpcSslContexts
 // .forClient()
 // .trustManager(certPemFile)
 // .build()
 //)
 .build();

 // client that blocks until invokations are finished
 // will not contain methods that stream responses
 CustomServiceGrpc.CustomServiceBlockingStub blockingClient =

 CustomServiceGrpc.newBlockingStub(channel);

 blockingClient.method(...);

 // client that is async
 CustomServiceGrpc.CustomServiceStub nonBlockingClient =

 CustomServiceGrpc.newStub(channel);

 nonBlockingClient.method(req, new

StreamObserver<GrpcTest.ResponseMsg>() {

 @Override
 public void onNext(GrpcTest.ResponseMsg value) {
 System.out.println(value);

 }

 @Override
 public void onError(Throwable t) {
 System.out.println(t);

 }

 @Override
 public void onCompleted() {
 System.out.println("done!");
 }

 });

 // shutdown
 channel.shutdown(); // shutdownNow to stop without clearing bufs
 channel.awaitTermination(Long.MAX_VALUE, TimeUnit.DAYS);

 // FYI: it's best to invoke shutdown after you've actually
 // send and recv'd everything, so as to shutdown the channel
 // prior to completing your communication.
 }

}

For the async variant, the StreamObservers are used similar to how they’re implemented for
service implementations. That is, if you’re streaming

● requests, you’ll get a StreamObserver to invoke for each request.
● responses, you’ll supply a StreamObserver that will get invoked for each response.

