
NodeJS
Introduction

Setup
Installing Latest Version
Installing Different Versions
Running Files
Running REPL
Using IDEs

Architecture

Programming Model
Callbacks
Emitters
Streams
Gotcha: Computationally Heavy Code
Gotcha: Sync vs Async Callbacks
Gotcha: Callback Hell

Modules
Loading Modules
Using Modules
Creating Modules
Gotcha: Cached Modules
Gotcha: module.exports vs exports

Common Modules
Global
Module
Process
Os
Buffer

Experimental Features

Introduction
NodeJS is a server-side Javascript platform based on the Chrome’s V8 Javascript engine. It
was initially released in 2009 by Ryan Dahl.

In NodeJS’s case, server-side means that it can run Javascript code locally instead of needing a
browser. You get access to I/O resources typical with most other languages that run locally (e.g.
networking, file, etc..), but you don’t get access to browser specific features (e.g. DOM search
and manipulation).

NOTE: There are packages you can use to simulate a browser within NodeJS.

Setup
The following sections discuss common setup and usage instructions for NodeJS.

Installing Latest Version
To install nodejs, you can use the instructions at
https://nodejs.org/en/download/package-manager.

For Linux Mint, this was…

~ $ curl -sL https://deb.nodesource.com/setup_8.x | sudo -E bash -

~ $ sudo apt-get install -y nodejs

Installing Different Versions
You also have the option of using node version manager (nvm), which will let you install multiple
different versions of node locally and switch between them as needed -- very useful for testing
between different versions of node.

NOTE: You don’t need sudo for any of this. NodeJS packages installed via nvm will be
installed locally.

For Linux Mint, this was…

~ $ wget -qO-

https://raw.githubusercontent.com/creationix/nvm/v0.33.6/install.sh | bash

=> Downloading nvm as script to '/home/user/.nvm'

=> Appending nvm source string to /home/user/.bashrc

=> Appending bash_completion source string to /home/user/.bashrc

=> Close and reopen your terminal to start using nvm or run the following

to use it now:

export NVM_DIR="$HOME/.nvm"

[-s "$NVM_DIR/nvm.sh"] && \. "$NVM_DIR/nvm.sh" # This loads nvm

https://nodejs.org/en/download/package-manager

[-s "$NVM_DIR/bash_completion"] && \. "$NVM_DIR/bash_completion" # This

loads nvm bash_completion

NOTE: After setting up nvm, open a new terminal and type nvm and you should see the
nvm help page.

To install a specific version of NodeJS, you can use nvm install vx.x.x…

~ $ nvm install v8.9.1

Downloading and installing node v8.9.1...

Downloading https://nodejs.org/dist/v8.9.1/node-v8.9.1-linux-x64.tar.xz...

100.0%

Computing checksum with sha256sum

Checksums matched!

Now using node v8.9.1 (npm v5.5.1)

Creating default alias: default -> v8.9.1

To list installed versions of NodeJS, you can use nvm ls…

~ $ nvm list

-> v6.6.0

 v8.9.1

default -> v8.9.1

node -> stable (-> v8.9.1) (default)

stable -> 8.9 (-> v8.9.1) (default)

iojs -> N/A (default)

lts/* -> lts/carbon (-> N/A)

lts/argon -> v4.8.7 (-> N/A)

lts/boron -> v6.12.2 (-> N/A)

lts/carbon -> v8.9.3 (-> N/A)

To use a specific version of NodeJS, you can use nvm use vx.x.x (remember that you need to
do this for every new shell)...

~ $ nvm use v8.9.1

Now using node v8.9.1 (npm v5.5.1)

~ $ node -v

v8.9.1

To set the default version of NodeJS for any new shells, you can use nvm alias default vx.x.x
(remember that this change only takes effect in new shells, not the current shell)…

~ $ nvm alias default v6.6.0

default -> v6.6.0

Running Files
You can run a Javascript file by using node filenamehere…

~/test $ node index.js

5

7

Running REPL
You can also start a REPL loop (just like with python) just by running the node command
without a filename…

~ $ node

> console.log('hi!');
hi!

undefined

> console.log('bye!');
bye!

undefined

>

NOTE: The REPL comes with autocomplete. Use the Tab key.

NOTE: In addition to allowing you to type in Javascript code, the REPL tool has some
built-in commands that you can use to do things like exit the REPL or get help. These
commands all start with a dot (.) and work with autocomplete. For example: .help or .exit.

Using IDEs
There are lots of different IDEs you can use, but the most popular one at the moment seems to
be VSCode. It has a large list of extensions available and provides several useful features out of
the box (different languages, autocomplete, built-in terminal, etc..).

https://code.visualstudio.com/docs/setup/linux for setup instructions on Linux Mint…

~ $ curl https://packages.microsoft.com/keys/microsoft.asc | gpg --dearmor

> microsoft.gpg

~ $ sudo mv microsoft.gpg /etc/apt/trusted.gpg.d/microsoft.gpg

~ $ sudo sh -c 'echo "deb [arch=amd64]

https://packages.microsoft.com/repos/vscode stable main" >

https://code.visualstudio.com/docs/setup/linux

/etc/apt/sources.list.d/vscode.list'

~ $ sudo apt-get update

~ $ sudo apt-get install code

Regardless of which IDE you use, you should set up editorconfig: http://editorconfig.org. It
supported by nearly every IDE.

Architecture
NodeJS’s architecture is centered around two components…

● V8 → Google Chrome’s Javascript engine
● libuv → Event loop library that perform all async I/O (and uses a thread pool to deal with

I/O that can’t be done async)

Javascript functionality in NodeJS is delegated to V8, while I/O functionality is delegated to
libuv. NodeJS acts as the bridge between these two components, in addition to providing
several higher-level user modules and nice-ities.

NOTE: It looks like there’s effort being put in to decouple NodeJS from V8, such that it
can use other Javascript engines to run: https://github.com/nodejs/node-chakracore. But,
this is not an officially supported project.

NOTE: libuv was originally written for NodeJS, but has since become its own project and
is used by other platforms/languages.

Programming Model
NOTE: This is super important. It’s the foundation of the entire platform.

NodeJS follows a typical event loop model -- similar to a game loop or Win32API’s GUI
message loop. Events come in and are queued for processing by the loop. The event loop
continually takes the next item off the queue and processes it by giving it to your code.

http://editorconfig.org/
https://github.com/nodejs/node-chakracore

The events coming in are almost always IO-based events: mouse click, keyboard button
pressed, file open, tcp connection closed, db connection open, etc…

In Javascript, the standard way to handle these events in your code are callbacks. Unlike other
languages (e.g. Java), you can’t / shouldn’t be blocking the thread waiting for an event. The
reason is that a NodeJS (and other Javascript engines) typically execute your code in a single
thread and don’t come with any multithreading APIs.

NOTE: The workaround to not having threading support is to spawn multiple NodeJS
processes, similar to what you do with Python (because Python’s multithreading support
suffers from global interpreter lock issues). There’s even a module to help with this
called cluster.

Callbacks
In Java, we may have code like this…

Socket skt = new Socket("localhost", 1234);
BufferedReader in;

in = new BufferedReader(new InputStreamReader(skt.getInputStream()));
System.out.println(in.readLine());

in.close();

skt.close()

We can’t block like this in Javascript/NodeJS, so that same logic has to be re-written using
callbacks.

For each function that has the potential to block, you pass in a callback. When that function is
finished, it’ll invoke that callback and pass any relevant information/results to it...

Socket.open("localhost", 1234, function(err, conn) {
 conn.readLine(function(err, line) {

 console.out(line);
 conn.close();

 });

});

The conventions for callbacks in NodeJS are…

● functions that take in a callback should take it in as the last parameter.
e.g. getRecordsFromDatabase(connection, searchterms, callbackResult) ...

● callback functions should take in the error as the first parameter while all other
parameters should be the result
e.g. function(error, callbackResult) ...

If your callbacks are small and only used once, it’s typical to have them inlined as anonymous
functions / closures. For example...

Socket.open("localhost", 1234, function(err, conn) {
 lineEmitter = conn.readLine();

 lineEmitter.on("newLine", function(line) {
 console.out(line);
 conn.close();

 });

});

instead of...

var incomingLineCallback = function(line) {
 console.out(line);
 conn.close();

};

var connEstablishedCallback = function(err, conn) {
 lineEmitter = conn.readLine();

 lineEmitter.on("newLine", incomingLineCallback);
};

Socket.open("localhost", 1234, connEstablishedCallback);

Emitters
Emitters are pretty much the same as callback functions, but a bit more flexible. You can think
of an event emitter as pubsub (publisher-subscriber) style callbacks. Instead of passing the
callback directly into a function, that function will return an event emitter object that “publishes”
events. You can then “subscribe” to listen for events as they happen.

Let's take the same example from the callback section. In Java, we may have code like this…

Socket skt = new Socket("localhost", 1234);
BufferedReader in;

in = new BufferedReader(new InputStreamReader(skt.getInputStream()));
System.out.println(in.readLine());

in.close();

skt.close()

We can’t block like this in Javascript/NodeJS, so that same logic has to be re-written using
emitters...

Socket.open("localhost", 1234, function(err, conn) {
 lineEmitter = conn.readLine();

 lineEmitter.on("newLine", function(line) {
 console.out(line);
 conn.close();

 });

});

NOTE: In addition to the on() function, the emitter object also has a emit() function that
can be used to publish events. This may be useful for mocks.

You may be thinking that there’s a race condition here: there’s a chance the event could hit
between when the event emitter is given back and when the callback is registered on the event
emitter.

This is not correct… Remember that NodeJS is single threaded and runs a event loop. So long
as we register with the event emitter before we release control (return from the function in this
case), we won't’ miss any events.

Streams
NodeJS comes with a streams similar to Java’s InputStream and OutputStream. The difference
is that NodeJS’s streams extend event emitters -- you listen for events such as data, error,
close, etc… on a stream instead of invoking functions and potentially blocking.

NOTE: In addition to Readable and Writable streams, NodeJS also has Duplex and
Transform streams. Duplex is a stream that’s both readable and writable. Transform
streams are also readable and writable but are used to transform data as its read/written
(e.g. compression/encryption/etc..).

NodeJS streams even provide higher-level functions such aspipe(), which automatically register
for events on the relevant event emitters such that data can flow between streams…

var request = require('request');
var process = require('process');

var is = request('http://www.pluralsight.com'); // readable stream
var os = process.stdout; // writeable stream
is.pipe(os); // pipe data is -> os

NOTE: A lot of modules return streams, and you can chain pipe() calls together. For
example you can pipe the output of a website to a gzip pipe and feed that to a filestream
pipe. This is very similar to linux commandline piping (e.g. cat somefile.txt | grep
searchterm).

Gotcha: Computationally Heavy Code
Code that’s computationally heavy will stop the event loop from processing events while it’s
running. This means that if …

● you a UI, your program will feel like it’s frozen.
● the event queue gets too backed up while your code works, it may end up crashing.

Here’s an example…

setTimeout(() => { console.log(new Date()) }, 1000);
setTimeout(() => { console.log(new Date()) }, 2000);
setTimeout(() => { console.log(new Date()) }, 3000);
for (i = 0; i < 1999999999; i++) {}

The code above should output the current date once every second for 3 seconds, but that’s not
what happens…

~/test $ node index.js

2017-12-09T17:52:07.298Z

2017-12-09T17:52:07.299Z

2017-12-09T17:52:07.303Z

Notice how the times in the output above are much closer than 1 second apart. The reason is
the for loop at the end -- it causes the event loop processing to block for 10+ seconds while it
iterates.

While that for loop is iterating, the 3 timeouts hit and their callbacks get put onto the event loop’s
queue. But, the event loop won’t get a chance to process those events (by invoking their
callbacks) until that for loop ends.

Gotcha: Sync vs Async Callbacks
Your functions should either be sync or async, it doesn’t make sense for callbacks to be invoked
async in some cases (via the event loop) and invoked sync in other cases (via your code).

Here’s a trivial example…

function timer(cb, timeout) {
 if (timeout % 1000 != 0) {
 cb("timeout must be whole seconds");
 return;
 }

 setTimeout(cb, timeout);

}

timer((error) => {

 if (error) {
 console.log('ERROR!');
 } else {
 console.log(new Date());
 }

}, 1500);

Notice what’s happening in timer. If the timeout value…

● isn’t divisible by 1000, it’ll invoke the callback sync (directly invoked by you).
● is divisible by 1000, it’ll invoke the callback async (invoked by the event loop).

This is bad design. Code that uses timer() may break because that it expects the cb parameter
to always be invoked asynchronously (that’s what happens in the happy path -- setTimeout will
put it onto the event loop). For example, that code may call timer() and then immediately follow
up by doing some other critical piece of work because it doesn’t expect the callback to be
invoked.

There are a few ways around this. If your code is intended to be async, you should always use
one of the following for invoking a callback...

● setTimeout(callback, 0);
● setImmediate(callback);
● process.nextTick(callback);

These all pretty much do the same thing, but they’re slightly different...

● setImmediate is like setTimeout with a 0ms wait, but it looks like setImmediate will
always take precedence over setTimeout in the event queue.

● process.nextTick seems to skip the event loop queue entirely -- it forces your callback to
be invoked as soon as you release control.

In most cases, if your code is intended to be async then process.nextTick is what you want
when invoking a callback. It’ll let the rest of the user code execute. As soon as it's done, it’ll
invoke the callback.

Gotcha: Callback Hell
The problem with callbacks is that in most non-trivial cases, you need to chain multiple small
one-time use callbacks together. If you use anonymous functions for these callbacks, your code
will quickly become unmaintainable...

doAsync1(function(err, result) {
 doAsync2(function(err, result) {
 doAsync3(function(err, result) {
 doAsync4(function(err, result) {
 });

 });

 });

});

The name for this is the callback hell. For a long time, the only workaround for this was to be
diligent when writing your code such that you didn’t nest too heavily. However, with newer
versions of the ECMA standard, the best way to workaround callback hell is to use Javascript
generators.

Javascript generators are essentially lightweight coroutines. For more information on how to use
generators, see https://strongloop.com/strongblog/node-js-callback-hell-promises-generators.

NOTE: If you’re using Javascript directly then generators are available right now in
almost all browsers as well as NodeJS. Babel probably shims in this feature if it isn’t
available. Typescript also seems to have generator support.

The following example was taken directly from the website...

var co = require('co')
var thunkify = require('thunkify')
var fs = require('fs')
var path = require('path')
var readdir = thunkify(fs.readdir)
var stat = thunkify(fs.stat)

https://strongloop.com/strongblog/node-js-callback-hell-promises-generators/

var myfunction = co(function* (dir) {
 var files = yield readdir(dir)
 var stats = yield files.map(function (file) {
 return stat(path.join(dir,file))
 })

 var largest = stats
 .filter(function (stat) { return stat.isFile() })
 .reduce(function (prev, next) {
 if (prev.size > next.size) return prev
 return next
 })

 return files[stats.indexOf(largest)]
});

Modules
A module is a file that exports some state or functionality. The file can be…

● another Javascript file (.js extension)...
Javascript files will be the types of modules you’ll be working with most frequently.

● a JSON file (.json extension)...
JSON files are parsed by node and loaded as a Javascript object.

● a compiled addon module (.node extension)...
Compiled addon modules are native binaries that export some functionality.

NOTE: Remember that there’s a difference between a module and a package. See the
Node Package Manager document for more information on packages.

Loading Modules
To get access to a module, you can pull it into your code via the require() function...

var myMod1 = require('./module1');
var CarMod = require('Car');

The string passed into the require function is either…

● a relative path pointing (with or without a file extension)
(e.g. ./FancyModule1 -- YOU CANNOT OMIT THE ./)

● a string identifying a built-in NodeJS module
(e.g. os, fs, process, http, crypto, etc…)

If you’re pointing to a file but you don’t specify the file extension, NodeJS will attempt to first
load a .js extension, failing that it’ll try a .json extension, and failing that it will try a .node
extension. The typical pattern here is to skip putting in the extension if your file is a Javascript
file, but explicitly put in the extension if your file is a JSON file or a node compiled module.

If you’re pointing to a folder, what gets loaded depends on if there’s a package.json file in the
folder. If…

● there is a package.json file and it has a main field, the file that the main field points to is
the file that gets loaded.

● there isn’t a package.json file, index.js within that folder will be the file that gets loaded.

NOTE: I’m not 100% sure how folders works work with with JSON files and node
compiled modules. I imagine that they work similarly in that the .json/.node file gets
loaded from the folder.

Using Modules
Once pulled in, you can access whatever that module has decided to export…

var x = myMod1.count + 5; // access exported variables
var y = myMod1.func() * 10;// access exported functions
var z = new CarMod(); // instantiated as if module was a class

Notice the naming convention used for the variables which hold onto the require functoin’s
result. A module that...

● only exports variables/functions is assigned to a camelcase variable name starting with a
lowercase letter (e.g. myMod1)

● is designed to be instantiated is assigned to a camelcase variable name starting with an
uppercase letter (e.g. CarMod)

NOTE: The next section has an important part about module caching -- it applies to this
section as well.

Creating Modules
To make variables/functions available from your Javascript file, simply assign them as
properties of the module.exports object. For example…

module.exports.myInt = 5;
module.exports.myFunc = function(x,y) { return x + y };

Then, you can use those properties in any other Javascript files that require() your module…

var myModule = require('./myModule');

console.log(myModule.myInt);
console.log(myModule.myFunc(3,4));

NOTE: Remember that we need to specify a relative path in require unless we’re trying
to pull in a built-in NodeJS module. If the module is in the same path as the file that
require()’s it, you need to prepend ./ to it.

The above script outputs…

~/test $ node index.js

5

7

Gotcha: Cached Modules
When a module gets pulled in, it’s likely a cached instance. That means every require() for that
module will pull likely in the same instance. In the example above, if a Javascript file pulls in
./myModule and changes myInt, that change will be visible to every other Javascript file that
pulled in ./myModule.

The way to work around this is to export a function that creates an object every time it’s invoked

module.exports = function() {
 ret = {}

 ret.myInt = 5;
 ret.myFunc = function(x,y) { return x + y };
 return ret;
}

var MyModule = require('./myModule');

var instance = MyModule();
console.log(instance.myInt);
console.log(instance.myFunc(3,4));

NOTE: Notice how the variable name for the require is using camelcase with an
uppercase. This is the convention to use when what’s being exported is designed to be
be instantiated. See previous section for more information.

Another workaround may be to manually invalidate the module cache:
https://stackoverflow.com/a/11477602.

https://stackoverflow.com/a/11477602

Gotcha: module.exports vs exports
You can add exports by either assigning to module.exports or exports (they point to the same
object), but in almost all cases you should be using modules.exports. In certain cases, what
you’re exporting will fail to export if you don’t. For example…

exports = function() {
 ret = {}

 ret.myInt = 5;
 ret.myFunc = function(x,y) { return x + y };
 return ret;
}

If you try to require() this module and use it, you’ll get a failure…

var MyModule = require('./myModule');

var instance = MyModule();
console.log(instance.myInt);
console.log(instance.myFunc(3,4));

~/test $ node index.js

/home/user/test/index.js:3

var instance = MyModule();

 ^

TypeError: MyModule is not a function

 at Object.<anonymous> (/home/user/test/index.js:3:16)

 at Module._compile (module.js:556:32)

 at Object.Module._extensions..js (module.js:565:10)

 at Module.load (module.js:473:32)

 at tryModuleLoad (module.js:432:12)

 at Function.Module._load (module.js:424:3)

 at Module.runMain (module.js:590:10)

 at run (bootstrap_node.js:394:7)

 at startup (bootstrap_node.js:149:9)

 at bootstrap_node.js:509:3

The reason for this is because when you load a module, that module is actually wrapped in and
called from a wrapper function…

function (exports, require, module, __filename, __dirname) { ... }

The first parameter of that function is exports, which references the same thing as
module.exports. The problem is that when we set the exports directly like we did in our example,
we’re not actually changing the reference in module.exports. We’re changing the reference in
the exports parameter of the wrapper function invocation, but not what the module object’s
exports property references.

If we had set module.export in our example instead, it would have worked as we expected.

Common Modules
The following is a list of common NodeJS modules and their closest Java equivalents…

● os (built-in)
→ Runtime

● process (built-in)
→ System
→ System.in
→ System.out
→ System.err
→ Process
→ ProcessBuilder

● fs (built-in)
→ FileInputStream
→ FileOutputStream
→ File
→ Files
→ Path
→ Paths

● buffer (built-in)
→ ByteBuffer
→ byte[]
→ DataInput
→ DataOutput

● http (built-in) / request (third-party)
→ HttpUrlConnection
→ Apache HttpClient

● url (built-in) / querystring (built-in)
→ URL
→ URI

● net (built-in) / dns (built-in) / dgram (built-in)
→ Netty
→ Socket

→ SocketChannel
→ ServerSocket
→ ServerSocketChannel
→ DatagramSocket
→ DatagramSocketChannel

● http (built-in) / socket.io (third-party) / express (third-party) / etc...
→ Jetty
→ Tomcat
→ etc..

● assert (built-in) / mocha (third-party) / chai (third-party) / jasmine (third-party) / etc..
→ JUnit
→ TestNG
→ etc..

Global
Variables and functions defined inside of a Javascript file are scoped to that Javascript file. That
means that if you did something like this…

var counter = 40;

That variable (counter) won’t be accessible outside of the Javascript file/module it was declared
in. To make things visible globally (to all Javascript files/modules), you need to assign it as a
property on the global object.

global.counter = 40;

It’s highly recommended that you don’t do this, but if you did you would be able to access
counter anywhere in your program after setting it on the global object -- you don’t need to use
the global object to access it, you can access it directly: global.counter vs counter.

The global object comes with useful properties that you can make use of in your code. Many of
these properties are self-explanatory. For example, isNaN is probably a function that determines
if your variable is a NaN floating point number.

The entire list of global object properties is too large to replicate, but if you want you can start a
REPL loop and type global. Followed by hitting the Tab key to get a list of properties (or just hit
the Tab key on a blank line -- same thing). You’ll see that many of the things commonly used
are actually coming from the global object.

For example, when you use require() to import a module you’re actually using global.require().
Another example is the global object itself -- the global object has a global property which
references itself, so you can do something like global.global.global.global… forever.

Module
The module objects contains information on the current module such as the file it comes from
and any modules it has loaded. So for example, if I loaded a module and then queried the
module object, I would see the module I loaded listed as a child…

> require('./index.js')
5

7

{}

> module
Module {

 id: '<repl>',
 exports: {},
 parent: undefined,
 filename: null,
 loaded: false,
 children:
 [Module {

 id: '/home/user/test/index.js',
 exports: {},
 parent: [Circular],
 filename: '/home/user/test/index.js',
 loaded: true,
 children: [Array],
 paths: [Array] }],
 paths:
 ['/home/user/test/repl/node_modules',
 '/home/user/test/node_modules',
 '/home/user/node_modules',
 '/home/node_modules',
 '/node_modules',
 '/home/user/.node_modules',
 '/home/user/.node_libraries',
 '/home/user/.nvm/versions/node/v8.9.1/lib/node'] }

Process
The process object let you interface with the current process as well as other processes on the
system. For example, you can use process to get the arguments passed into your app, get
access to stdin/stdout/stderr, access environment variables, or kill another process...

process {

 title: 'node',
 version: 'v8.9.1',
...

 stdout: [Getter],

 stderr: [Getter],
 stdin: [Getter],
 openStdin: [Function],
 exit: [Function],
 kill: [Function],
...

}

Os
The os object lets you access particulars of the operating system. For example, you can use os
to get the amount of total RAM, the amount of free RAM, the number of cores, etc…

> os

{ arch: { [Function: arch] [Symbol(Symbol.toPrimitive)]: [Function] },
 cpus: [Function: cpus],
 EOL: '\n',
 endianness: { [Function: endianness] [Symbol(Symbol.toPrimitive)]:
[Function] },
 freemem: { [Function: getFreeMem] [Symbol(Symbol.toPrimitive)]:
[Function] },
 homedir: { [Function: getHomeDirectory] [Symbol(Symbol.toPrimitive)]:
[Function] },
 hostname: { [Function: getHostname] [Symbol(Symbol.toPrimitive)]:
[Function] },
 loadavg: [Function: loadavg],
 networkInterfaces: [Function: networkInterfaces],
 platform: { [Function: platform] [Symbol(Symbol.toPrimitive)]: [Function]
},

 release: { [Function: getOSRelease] [Symbol(Symbol.toPrimitive)]:
[Function] },
 tmpdir: { [Function: tmpdir] [Symbol(Symbol.toPrimitive)]: [Function] },

...

}

Buffer
Buffer objects are essentially encapsulations around raw binary data that seem to borrow
heavily from java.nio.ByteBuffer. Buffer objects in NodeJS are allocated outside of the V8 heap,
just like ByteBuffer.allocateDirect().

The common pattern with a lot of I/O operations (e.g. file reads or socket reads) is that if you
don’t specify a character encoding (e.g. UTF-8), you’ll get back a Buffer object instead of a
string.

> buffer

{ Buffer:
 { [Function: Buffer]
 poolSize: 8192,
 from: [Function],
 alloc: [Function],
 allocUnsafe: [Function],
 allocUnsafeSlow: [Function],
 isBuffer: [Function: isBuffer],
 compare: [Function: compare],
 isEncoding: [Function],
 concat: [Function],
 byteLength: [Function: byteLength],
 [Symbol(node.isEncoding)]: [Function] },
 SlowBuffer: [Function: SlowBuffer],
 INSPECT_MAX_BYTES: 50,
 kMaxLength: 2147483647,
 constants: { MAX_LENGTH: 2147483647, MAX_STRING_LENGTH: 268435440 },
 kStringMaxLength: 268435440,
 transcode: [Function: transcode] }

Experimental Features
NodeJS uses V8 for its Javascript engine. V8 comes with experimental JS features, but they
aren’t enabled by default. If you want to enable these features you need to use the relevant
--harmony flags when running NodeJS…

~ $ node --v8-options | grep "harmony"

 --es_staging (enable test-worthy harmony features (for internal use

only))

 --harmony (enable all completed harmony features)

 --harmony_shipping (enable all shipped harmony features)

 --harmony_array_prototype_values (enable "harmony Array.prototype.values"

(in progress))

 --harmony_function_sent (enable "harmony function.sent" (in progress))

 --harmony_sharedarraybuffer (enable "harmony sharedarraybuffer" (in

progress))

 --harmony_do_expressions (enable "harmony do-expressions" (in progress))

 --harmony_class_fields (enable "harmony public fields in class literals"

(in progress))

 --harmony_async_iteration (enable "harmony async iteration" (in

progress))

 --harmony_promise_finally (enable "harmony Promise.prototype.finally" (in

progress))

 --harmony_number_format_to_parts (enable "Intl.NumberFormat.prototype."

"formatToParts" (in progress))

 --harmony_function_tostring (enable "harmony

Function.prototype.toString")

 --harmony_regexp_dotall (enable "harmony regexp dotall flag")

 --harmony_regexp_lookbehind (enable "harmony regexp lookbehind")

 --harmony_regexp_named_captures (enable "harmony regexp named captures")

 --harmony_regexp_property (enable "harmony unicode regexp property

classes")

 --harmony_strict_legacy_accessor_builtins (enable "treat __defineGetter__

and related functions as strict")

 --harmony_template_escapes (enable "harmony invalid escapes in tagged

template literals")

 --harmony_restrict_constructor_return (enable "harmony disallow non

undefined primitive return value from class " "constructor")

 --harmony_dynamic_import (enable "harmony dynamic import")

 --harmony_restrictive_generators (enable "harmony restrictions on

generator declarations")

 --harmony_object_rest_spread (enable "harmony object rest spread

properties"

Node Package Manager
Introduction

Setup

Package Creation

Package Dependencies
Add Dependencies

Code Dependencies
Dev Dependencies

Remove Dependencies
List Dependencies
Manage Dependencies

Dependency Versions
Exact Versions
Version Ranges

Manage Dependency Locations
Updating Dependencies

Package Scripts

Cloned Packages

End-user Packages

Searching for Packages

Upgrading NPM

Introduction
Node Package Manager (NPM) is a package manager for Javascript packages. This includes
both packages for the web clients (e.g. jquery) and packages for programs that run on nodejs
(e.g. redis-commander).

A npm package is a directory with one or more modules inside of it and a package.json file that
contains metadata describing the package. The metadata includes things like who the author of
the package is, what the version of the package is, what other packages does the package
depend on, etc..

NOTE: Remember that there’s a difference between a package and a module. A module
is a single Javascript file. A package can have many modules (javascript files).

NOTE: Unlike maven, packages in npm’s registry isn’t limited to development packages
-- they contain packages for users as well. For example, there’s a package called

Setup
To set up NPM and nodejs, you can use the instructions at
https://nodejs.org/en/download/package-manager.

For Linux Mint, this was…

curl -sL https://deb.nodesource.com/setup_8.x | sudo -E bash -

sudo apt-get install -y nodejs

Package Creation
To create a package, all you really need is a package.json file. If you don’t want to write it out by
hand, you can use the npm init. This command will ask you questions via the command-line and
generate a package.json based on your answers.

NOTE: If you’re creating a lot of packages, you can use npm set to set defaults for a lot
of the fields that npm init asks for. For example, you can use npm set init-author-name
‘Firstname Lastname’ to set the default author.

~/test $ npm init

This utility will walk you through creating a package.json file.

It only covers the most common items, and tries to guess sensible defaults.

See `npm help json` for definitive documentation on these fields

and exactly what they do.

Use `npm install <pkg>` afterwards to install a package and

save it as a dependency in the package.json file.

Press ^C at any time to quit.

package name: (test)

version: (1.0.0)

description:

entry point: (index.js)

test command:

git repository:

keywords:

https://nodejs.org/en/download/package-manager

author:

license: (ISC)

About to write to /home/user/test/package.json:

{

 "name": "test",

 "version": "1.0.0",

 "description": "",

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "author": "",

 "license": "ISC"

}

Is this ok? (yes)

Package Dependencies
Packages can have code dependencies and dev dependencies. Code dependencies are used
by your code, while dev dependencies are used by your build process.

Add Dependencies

Code Dependencies
To add a dependency in your package, you you can run npm install packagename --save. This
will download the dependency (along with any dependencies it depends on) and add the
dependencies field of your package.json file.

By default, the latest version of the package is used. Downloaded dependencies should end up
in a subdirectory called node_modules.

NOTE: -S can be used as shorthand for --save.

~/test $ npm install lodash --save

+ lodash@4.17.4

added 1 package in 0.578s

~/test $ cat package.json

{

 "name": "test",

 "version": "1.0.0",

 "description": "",

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "author": "",

 "license": "ISC",

 "dependencies": {

 "lodash": "^4.17.4"

 }

}

Dev Dependencies
In addition to code dependencies, npm allows you to have development dependencies.
Development dependencies are dependencies that your build process may need but your code
doesn’t. For example, you may have tests that depend on the Javascript testing framework
Mocha -- the code for your application won’t need Mocha, but the tests for your application will.

To add a development dependency, you can run npm install packagename --save-dev. This will
download the dependency (along with any dependencies it depends on) and add the
devDependencies field of your package.json file.

By default, the latest version of the package is used. Downloaded dependencies should end up
in a subdirectory called node_modules.

NOTE: -D can be used as shorthand for --save-dev.

user@user-VirtualBox ~/test $ npm install mocha --save-dev

+ mocha@4.0.1

added 24 packages in 1.057s

user@user-VirtualBox ~/test $ cat package.json

{

 "name": "test",

 "version": "1.0.0",

 "description": "",

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "author": "",

 "license": "ISC",

 "dependencies": {

 "lodash": "^4.17.4"

 },

 "devDependencies": {

 "mocha": "^4.0.1"

 }

}

Remove Dependencies
To remove dependencies, you can use npm uninstall packagename. It doesn’t matter if it’s a
development dependency or a code dependency -- it gets removed from the appropriate section
of the package.json file as well as deleted from the node_modules subdirectory.

~/test $ npm uninstall mocha

removed 24 packages in 0.174s

NOTE: It looks like in older versions of npm, the uninstall command just deleted the
package from the node_modules subdirectory. If you wanted it out of package.json you
needed to provide a --save flag (for code dependencies) or a --save-dev flag (for
development dependencies). It doesn’t look like this is the case now (using npm 5.5.1).

Sometimes you may remove dependencies by directly removing them from your package.json
file. If you do this, you should also run npm prune afterwards to remove the dependencies from
your node_modules subdirectory.

List Dependencies
To list the dependency tree of your package, you can list it using npm list.

NOTE: To limit the depth, you can use the --depth argument.

~/test $ npm list

test@1.0.0 /home/user/test

├── lodash@4.17.4

└─┬ mocha@4.0.1

 ├── browser-stdout@1.3.0

 ├── commander@2.11.0

 ├─┬ debug@3.1.0

 │ └── ms@2.0.0

 ├── diff@3.3.1

 ├── escape-string-regexp@1.0.5

 ├─┬ glob@7.1.2

 │ ├── fs.realpath@1.0.0

 │ ├─┬ inflight@1.0.6

 │ │ ├── once@1.4.0 deduped

 │ │ └── wrappy@1.0.2

 │ ├── inherits@2.0.3

 │ ├─┬ minimatch@3.0.4

 │ │ └─┬ brace-expansion@1.1.8

 │ │ ├── balanced-match@1.0.0

 │ │ └── concat-map@0.0.1

 │ ├─┬ once@1.4.0

 │ │ └── wrappy@1.0.2 deduped

 │ └── path-is-absolute@1.0.1

 ├── growl@1.10.3

 ├── he@1.1.1

 ├─┬ mkdirp@0.5.1

 │ └── minimist@0.0.8

 └─┬ supports-color@4.4.0

 └── has-flag@2.0.0

Manage Dependencies

Dependency Versions
Packages in npm use semantic versioning (https://semver.org). When you use npm install but
don’t specify a version number, npm will…

● download the latest version that package that’s currently in the npm registry
● setup your package.json to use the latest MINOR version of what was downloaded

For example, if you were to npm install lodash --save, npm will look through the registry and see
that version 4.17.4 is the latest version of lodash. It’ll download that version into your
node_modules subdirectory, and setup your package.json to use the newest version of lodash
4.x.x.

NOTE: The carrot (^) before the version means always use the latest minor version, so
the latest version so long as it’s version 4.x.x.

https://semver.org/

 "dependencies": {

 "lodash": "^4.17.4"

 }

Exact Versions
To download a specific version of the dependency rather than the latest, add the version after
the package name when you run npm install, separated by a @ sign. In addition to that, if you
want your package.json to target that exact version as well, add the --save-exact flag to npm
install.

For example, npm install lodash@4.1.0 --save --save-exact will download version 4.1.0 and
setup your package.json to target that exact version of lodash.

NOTE: Notice how there’s no carrot (^) or tilde (~) before the version number here. Noy
having those tells npm to use this exact version.

 "dependencies": {

 "lodash": "4.1.0"

 }

Version Ranges
By default, when you add a dependency but don’t use the --save-exact flag, the version that
goes into your package.json has a carrot (^) prepended to it.

 "dependencies": {

 "lodash": "^4.17.4"

 }

The carrot (^) and tilde(^) have a special meaning when they’re prepended onto a version
number. When npm sees the …

● ~, it uses the most recent minor version → e.g. ~3.5.5 will use the latest 3.5.x version
● ^, it uses the most recent major version → e.g. ^3.5.5 will use the latest 3.x.x version

Manage Dependency Locations
Sometimes, packages may not be in the npm registry. In those cases, you can either download
the project to a local directory or point to URL when you do npm install: npm install <location>
--save.

For example, npm install https://github.com/palantir/eclipse-typescript --save results in…

"dependencies": {

 "eclipse-typescript":

"git+https://github.com/palantir/eclipse-typescript.git"

}

Updating Dependencies
Depending on how your dependency versions are specified in your package.json (read the
section on versions for more info on this), you can update dependencies using npm update.

Prior to an npm update…

 "dependencies": {

 "lodash": "^4.1.0"

 }

After the npm update...

 "dependencies": {

 "lodash": "^4.17.4"

 }

Package Scripts
The package.json file may define one or more scripts that you can run to perform some task.
These scripts are basically just CLI commands that get piped to an OS shell -- they aren’t
unique to npm or Javascript.

NPM has several built-in script names that you can run from just by calling npm scriptname:
https://docs.npmjs.com/misc/scripts. For example, you can run the “test” script by simply running
npm test.

 "scripts": {

 "test": "node runscripts"

 "start": "node startwebserverapp"

 }

If your script name isn’t part of the list of built-in script names, you can still run it but you have to
use npm run scriptname. For example, npm run mycustomscriptnamehere.

The most common scripts included in package.json are…

● test → runs tests for your project

https://docs.npmjs.com/misc/scripts

● start → starts your project (e.g. start a webserver and point it to your files)

Cloned Packages
Sometimes, packages may not be in the npm registry. In those cases, you can either download
the project to a local directory and perform npm install, or you can point to the URL directly and
do npm install <url>.

~/node-github $ npm install

npm notice created a lockfile as package-lock.json. You should commit this

file.

added 927 packages in 19.567s

After installing, you should notice a new subdirectory called node_modules. This is where all the
dependencies, along with whatever other dependencies those dependencies may have down
the line, have been downloaded to.

End-user Packages
To install a end-user package, you typically need to include the -g flag when you install: npm
install -g packagename. The -g flag means that the package will be installed globally.

For example, there’s a package called redis-commander that provides users with a nice
web-based GUI to interface with a Redis server. You install it by using npm install -g
redis-commander.

The installation process will set up your system with all the scripts/aliases needed to run the
package. In redis-commander’s case, your system will be updated such that if you type
redis-commander in a shell, it’ll start up the redis-commander UI.

NOTE: Since system-level changes may be happening (e.g. setting up new global
aliases), you may need to be running the installation as root.

NOTE: To list all packages installed globally, you can use npm list -g. To uninstall a
global package, you can use npm uninstall -g packagename.

NOTE: If you don’t use the -g flag, the scripts/aliases/binaries will go in the .bin
subdirectory. If you’re running npm scripts (see npm scripts section), this .bin
subdirectory is automatically added to the paths environment variable prior to the script
running, so you’ll automatically have access to the scripts/aliases/binaries from your
scripts.

~ $ sudo npm install -g redis-commander

+ redis-commander@0.4.5

added 475 packages in 8.966s

~ $ redis-commander

{ Error: ENOENT: no such file or directory, open

'/home/user/.redis-commander'

 errno: -2,

 code: 'ENOENT',

 syscall: 'open',

 path: '/home/user/.redis-commander' }

No config found or was invalid.

Using default configuration.

No Save: true

listening on 0.0.0.0 : 8081

Searching for Packages
Searching for packages is straight forward, you can either use npm search searchterm, or you
can go to the npm registry itself and search for search terms: https://www.npmjs.com/.

~/test $ npm search test

NAME | DESCRIPTION | AUTHOR

test | (Un)CommonJS test... | =gozala

react-test-renderer | React package for... | =clemmy...

chai | BDD/TDD assertion... | =chaijs

invariant | invariant | =cpojer...

selenium-webdriver | The official... | =jmleyba

enzyme | JavaScript Testing... | =gdborton...

mocha | simple, flexible,... | =scottfreecode

clean-css | A well-tested CSS... | =goalsmashers.

jasmine-core | Official packaging... | =dwfrank...

test-exclude | test for inclusion... | =jakxz =bcoe

balanced-match | Match balanced... | =juliangruber

protractor | Webdriver E2E test... | =juliemr...

jasmine | Command line jasmine | =slackersoft...

nyc | the Istanbul... | =isaacs =bcoe

kind-of | Get the native type... | =doowb...

is | the definitive... | =ljharb...

is-number | Returns true if the... | =realityking..

is-glob | Returns `true` if... | =doowb...

https://www.npmjs.com/

deep-eql | Improved deep... | =chaijs

should | test framework... | =gjohnson...

Upgrading NPM
NPM itself is a package in the NPM repository, and you can use NPM to upgrade NPM.

To upgrade NPM to the latest release, perform the following command: sudo npm install
npm@latest -g.

~/test $ sudo npm install npm@latest -g

[sudo] password for user:

/usr/bin/npm -> /usr/lib/node_modules/npm/bin/npm-cli.js

/usr/bin/npx -> /usr/lib/node_modules/npm/bin/npx-cli.js

+ npm@5.5.1

updated 1 package in 4.628s

NOTE: Remember that -g means install globally (see end-user packages section). Since
we have -g, we need to use sudo. The @latest after npm is what we use to define the
version of npm that we want (see dependency versions section).

