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Introduction

Programming model specific to NVIDIA GPUs.

GPU Design Tenets

Core GPU design tenets are as follows...
1. Many simple compute units vs few powerful compute units
GPUs trade control for simpler computational units. For the programmer, that just means




that you’re more restricted in the way you write your programs.

Explicitly parallel programming model

You have to model your software such it makes use of lots of execution threads. It isn’t
like programming for the CPU where you’re more likely to write large chunks of code
intended to run on a single thread.

Unlike programming for the CPU, the GPU is efficient at launching lots of threads and
running them all in parallel. If you aren’t running lots of threads, you aren’t using the
GPU effectively: “the GPU doesn’t even get out of bed in the morning for fewer than
1000 threads.”

Optimized for throughput
GPUs are optimized to run many tasks at once, but not necessarily to run those tasks
quickly.

Terminology

HOST — PC that the GPU(s) are in.

DEVICE — GPU.

KERNEL — program to run on GPU (multiple copies of the same kernel run in parallel).
THREAD — execution thread of our kernel (just like a CPU thread)

BLOCK — a block can run up to n threads of your kernel

SM — streaming multiprocessor (hardware component) that executes blocks

WARP CORE — SMs are made up of many warp cores (see thread divergence section)
SIMD — single instruction, multiple dataset (see thread divergence section)

SIMT — single instruction, multiple threads (see thread divergence section)

BARRIER — thread synchronization pattern (wait for all threads to reach some point
before continuing), see memory synchronization sections

ARRAY OF STRUCTS (AOS) — see transpose pattern section

STRUCT OF ARRAYS (SOA) — see transpose pattern section

STEP COMPLEXITY — see complexity section

WORK COMPLEXITY — see complexity section

WORK EFFICIENT— see complexity section

WEAK SCALING — using parallelism to scale a problem so larger/more problems can
be run at once

STRONG SCALING — using parallelism to scale a problem so it can be run faster
OCCUPANCY — number of threads running per SM vs number of threads SM is
capable of running




Programming Basics

Access Pattern

CUDA'’s programming model essentially looks like the following....

CUDA program
(written in C w/ extensions)

RN

HOST DEVICE
(aka CPUs) (aka GPU)
CPU GPU
memaory Memaory

CUDA'’s tools allow you to write a single C program and target parts of your code to run on the
GPU (called device) instead of your CPU (called host). You can write your program as a single
whole C program, and the parts identified to run on the GPU (called kernels) will be compiled
accordingly to run by the CUDA compiler.

Important things to note here...
1. The host (CPU) is in charge -- it runs the program and it gives directions to the device
(GPU) on what to do: run task, copying to, copy from, etc...
2. The host (CPUs) and the device (GPUs) have separate memory -- there is no implicit
way to view the memory between the two, you have explicitly shuttle data back and forth.

NOTE: Although multiple languages are supported, CUDA’s main language is C.

NOTE: CUDA'’s “compiler” actually delegates complication of CPU-side C code to either
GCC or MSVC. The only compiling that it actually does is the GPU portion?

Workflow

The typical workflow for a CUDA program is as follows...
1. Host (CPU) allocates storage on the device (GPU)
2. Host (CPU) copies input data to the device (GPU)



3. Host (CPU) launches kernel(s) on the device (GPU) to process that input data and
produce output data
4. Host (CPU) copies the output data from the device (GPU)

Obviously, there’s overhead to copying data back and forth. As such, your typical GPU program

should have a high ratio of computation to communication -- you send your data, do a lot of
work, then grab the resulting data.

Programming Model

Software View

In software, you organize your execution threads to run as part of one or more blocks. Those
blocks make up a grid.
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Hardware View

In hardware, the part of the NVIDIA GPU that executes your kernel is called an SM (streaming
multiprocessor). There are multiple SMs in each GPU, and each of them is capable of running
some fixed number of threads at once + it has some small amount of fixed memory that’s local
to it.
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NOTE: For example, an NVIDIA 1080Ti has 28 SMs.



Full View and Restrictions

Ultimately, a block maps entirely onto one SM. Since the threads within the block are all running
on the same SM, those threads can cooperate with each other to potentially solve some
sub-problem (remember that each SM has some shared memory).

You as the programmer don’t have to worry about SMs. The underlying driver/hardware does
the work of assigning blocks to SMs. Just be aware that you have no guarantees other than...
e your block will only ever run on 1 SM
(won’t be split between SMs -- this is a driver/hardware level thing that we don’t control)
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e only 1 kernel runs at once
(all blocks in a kernel finish before blocks on the next kernel run)
KERMEL CIIELIE

kemeifuncl=<<16, 16==();
kametiunc2<<<16, 32=5();
karmellunci<<<l B10==();

Other than that there are NO GUARANTEES, including...
1. there’s no way to get multiple kernels to run at once
(all blocks in a kernel finish before blocks on the next kernel run)
2. there’s no way to specify which SM runs which blocks
(you can’t assign a block to an SM)
3. there’s no way to specify when threads or blocks are run
(you can’t specify execution order of threads or blocks)
4. there’s no guarantee that all your blocks will run at once
(but there is a guarantee that all the threads in a single block will run at once)
5. there’s no way to split your blocks between multiple SMs
(remember that blocks can only run on a single SM, and we can’t access SMs directly)
6. threads from different blocks cannot cooperate
(only threads from the same block can communicate)

NOTE: These restrictions are what make the GPU fast. Just remember that the only
quarantee you have is that all the threads in a block will run together.




Efficiency/Optimization

To write efficient programs/kernels for GPUs, we need to maximize arithmetic intensity: amount
of math operations we do vs the amount of time of time we spend fetching operands from
memory for those math operations.

This boils down to...
e maximizing the math we do per thread (compute ops)
e minimizing the time spent on memory per thread (fetch/store ops)

We want to optimize for spending more time working and less time on accessing memory.

NOTE: Our focus here isn’t necessarily to do LESS memory access, but to spend less
TIME on memory access. There’ll be more details on this in the memory section.

Libraries

It can be very tedious and error prone to write your own implementations of low-level parallel
algorithms in raw CUDA. Just like how you wouldn’t want to write your own sorting algorithm
every time you need to sort something, you don’t want to write your own GPU parallel primitives
every time you need to do something on the GPU.

There are a number of CUDA libraries that hide many of the little details when it comes to GPU
programming...

e thrust — C++ STL for CUDA, it lets you do operations like scan, reduce, and a ton of
other stuff via an STL-like library. It doesn’t let you run kernels directly.

e cub — cub (CUda unBound) is a library that makes it easier to write CUDA kernels. It
figures out low-level particulars of how your kernel should run (e.g. how much shared
memory can it use, thread block size, etc..).
cublas — blas library that uses CUDA

e CuFFT — fft library that uses CUDA

There are many more, but these seem to be the most popular.

CUDA Kernels

The code your host (CPU) sends to your device (GPU) to run is called a kernel. Kernels are
coded as if they’re serial programs -- they do not explicitly define anything related to parallelism.
The device (GPU) will launch multiple instances of the kernel to work on pieces of the data.




Remember that a thread runs 1 copy of your kernel: threads are organized in blocks, and blocks
are part of a grid.

Example: CPU vs GPU

For example, imagine that you wanted to run some code to go over an array of floats and
multiply power each by 2 (output = input”2).

Here’s how that would look if you were to write it serially for the CPU...

Here’s how that would look if you were to write it for CUDA...




Notice that vars that...
e point to memory on the device (GPU) are prefixed with d_
e point to memory on the host (CPU) are prefixed with h_

This is an important visual identifier. You can’t access memory on the device (GPU) from the
host (CPU) or vice versa.

Notice what’s happening host-side (CPU)...
1. it allocates memory on the device
2. copies input data to the device
3. runs the kernel (1 block of 64 threads)
4. copies output data from the device
5. frees the memory that was allocated on the device

Notice what’s happening for device-side (GPU)...
1. code is written as if it’s single threaded and intended to work on a single element
2. _ global__ declspec is used to tell the compiler that this is device code
3. threadldx is a global var that specifies which thread the copy of the kernel is on
4. the params match the args passed in

There’s some extra overhead here (in terms of code we have to write) when compared to the
single-threaded CPU equivalent. There isn’t much that we can do about this.



Dimensionality

It turns out that a lot of what CUDA is used for is image processing (2D) and real-world
simulations (3D). As such, you can specify your blocks and/or threads as 1D, 2D, or 3D. In the
graphic below, our threads are defined as a 2D block of 12x5 and our grid is a 1D block of 6...
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The importance of this will be explained in further sections.

Launching

If you looked at the example, you saw that we launched 1 block of 64 threads. The syntax for
launching a kernel is...

This is exactly like calling a function, except that you specify your launch parameters between
the <<< and >>>.

Here’'s an example...

NOTE: SHAREDMEM_PER_BLOCK wasn'’t specified in the example. It defaults to O if
left out. This parameter will be discussed further in the memory section of the document.

Kernels launch asynchronously. That means that it won’t block until the kernel finishes
executing -- control will very likely be returned to you before the kernel finishes. If you want to
block until the kernel finishes, you can call cudaDeviceSynchronize().

Remember that only 1 kernel can execute at once. If you launch multiple kernels back-to-back,
they’ll be put into a queue.



NOTE: Typically, kernels are launched from the host. But, newer versions of CUDA will
allow you to launch a kernel from inside a kernel, where that parent kernel waits for the
child kernels to finish. Look up dynamic parallelism.

Defining Threads and Blocks

It turns out that a lot of what CUDA is used for is image processing (2D) and real-world
simulations (3D). As such, it has native support for specifying things in 2D and 3D.

If you looked at the threading example, you saw that there was a threadldx global var that we
used to determine which item to work on. We used the x member of that var, but that var is a
struct with 3 members: x, y, and z.

When we launch our kernel, we can actually pass in dim3 structures for the NUM_OF_BLOCKS
and NUM_OF_THREADS inputs. For example...

func<<<dim3(2, 2, 1), dim3( , 1)>>>(argl, arg2, ...);

Then, in our kernel, we can go ahead and make use of the y and z members of threadldx.

NOTE: There are other important global variables that need to be used to determine
which part of the data you’re suppose to work on. See the Identifying Threads section.

If we use ints instead of dim3s, it’s effectively the same as specifying 1 for the y and z
parameters...

func<<<1, >>>(argl, arg2, ...);
func<<<dim3(1, 1, 1), dim3(64, 1, 1)>>>(argl, arg2, ...);

Thread Limits

A device (GPU) can run many blocks at once, but there’s a maximum number of threads per
block. For older GPUs, this is 512. For newer GPUs, this is 1024 (possibly more? The lessons
this is coming from are old).

Pick the combination of blocks and threads-per-block that makes the most sense for you. For
example, if you wanted to run 1280 threads, you can try doing func<<<10,128>> (10 blocks of
128 threads-per-block). What you can’t do is func<<<1,1280>> -- this is too many
threads-per-block.

NOTE: Does the threads-per-block value have to be a power of 2? Tests show that it
doesn’t. But, it looks like in the example codes provided, the total size of the array



passed into the kernel as an arg, and a guard is in place in the kernel to make sure it
doesn’t process out of bounds items. It may be that this is needed in certain cases.

|dentifying

Remember that multiple copies of your kernel run at once (each in its own threads). There are
global variables that you can access in your kernel code to help identify which thread it's
running in.

In the squaring example, we used the global var threadldx to determine which part of the data

we need to work on. This is all we needed because we used a block size of 1. If we used more
than 1 block, we would need to make use of other global vars as well to work out which part of
the data we need to work on...

e threadldx — which thread we’re running on (relative to the block we’re running on)
e blockldx — which block we’re running on

blockDim — number of threads specified for each block
e gridDim — number of blocks specified

For example, if our kernel only deals with 1 item per thread (and we’re only dealing with 1D
data), we can find out which item we should be working on using this simple formula...

idx = blockIdx.x * blockDim.x + threadIdx.x

Debugging

You can debug your CUDA kernels by calling printf() directly in the kernel. Once your kernel
launch finishes, you need to call cudaDeviceSynchronize() to flush the stuff you printed out.

Obviously, there’s overhead here. You should avoid calling printf() unless absolutely required.

Here’s an example...

, threadIdx.x, blockIdx.x);




hello<<<16, 1>>>();

cudaDeviceSynchronize();

This is what the output looks like...
I'm a thread 0 of block 9
I'm a thread 0 of block 8
I'm a thread 0 of block 13
I'm a thread 0 of block 5
I'm a thread 0 of block 10
I'm a thread 0 of block 2
I'm a thread 0 of block 4
I'm a thread 0 of block 6
I'm a thread 0 of block 12
I'm a thread 0 of block 14
I'm a thread 0 of block 11
I'm a thread 0 of block 1
I'm a thread 0 of block 3
I'm a thread 0 of block 0
I'm a thread 0 of block 15
I'm a thread 0 of block 7

NOTE: If you're accessing shared memory from the printf call, you will need to call
__syncthreads() before you do, because the writes HAVE TO COMPLETE before you
can call printf(O!!'!'! THIS IS SUPER IMPORTANT. Don’'t know what __syncthreads() is?
Check the barrier section.

CUDA Memory

The device (GPU) provide 3 levels of memory: local, shared, and global.

e A thread has access to local memory
(this is memory that’s local to the thread -- e.g. stack memory?)

> | LOCAL MEM




e Threads in the same block have access to shared memory
(this is memory that can be accessed by any thread in the block)

> | SHARED MEM

e All threads, regardless of the block, have access to global memory
(this is memory that can be accessed by any thread)

| 3 |
5 3 |
i 3 |
) 3 |

Essentially all this means is that...
1. threads from the same block can work together via shared memory
2. threads from different blocks can work together via global memory

— GLOBAL MEM

The problem here is that there are multiple threads running at once, so if you're going to be
reading and writing to the same location from different threads, you’re going to run into
thread/memory synchronization issues. Working around these will be discussed in a further
section.

Obviously, local memory would be the fastest to access, followed by shared memory, followed
by global memory.

Shared Memory

You can specify some amount of memory to be shared by the threads in each block. Each
thread in a block will have access that shared memory.

The 2 important things to note about shared memory...
e All blocks have the same amount of shared memory
e You cannot dynamically allocate shared memory in the kernel

There are 2 ways to specify shared memory...
e As alaunch parameter — use this if you need to define the amount of mem at runtime



e As an array in the kernel — use this if you know the amount of mem at compile time

NOTE: Why use shared block memory? Apparently it's memory that’s directly on the
chip and as such is up to 100x faster to access than global GPU memory. There’s also
some nuance here when it comes to memory synchronization and stuff. I'll try to cover
this in some other topic but for now just see this...
https://devblogs.nvidia.com/parallelforall/using-shared-memory-cuda-cc/

NOTE: Apparently using shared memory takes away from the L1 cache on the device
(GPU). Also the amount of shared memory you can have seems to be super small (16 to
64kb?).

Specify as Launch Parameter

You can specify the amount of memory via the the 3rd launch parameter
(SHAREDMEM_PER_BLOCK)...

For example, if | wanted to have 16 floats of shared memory in each block...

NOTE: The value passed in doesn’t have to be a literal. You can compute some value
and pass that in.

Once | want to access this in my kernel, I'd go to my kernel and stick in an extern’d unsized float
array with a declspec of __shared__...

Specify in Kernel

If you know the amount of memory you want to share at compile time, you can declare the array
right inside the kernel instead of using a launch parameter. All you have to do is make sure you
using a literal when declaring your array and have a declspec of __shared__ oniit...

Synchronization Barriers

You can synchronize your threads via a barrier. A barrier just means that all your threads will
PAUSE execution at a certain point and wait for the others to finish...



https://devblogs.nvidia.com/parallelforall/using-shared-memory-cuda-cc/

.............. «— barrier

To add a barrier in your kernel, you need to call __synchthreads(). Below is a trivial example of
using __syncthreads() to shift the elements in an array left by one...




The important thing with the above example is that 1 thread is assigned/isolated to 1 element in
the array. So each thread...
1. copies the element it's responsible from global mem to shared mem

2. waits for other threads to catch up (all elements should be in shared mem at this point)
3. reads in the neighbouring element from shared mem
4. waits for other threads to catch up (all elements should be read at this point)
5. writes the neighbour to the element it’s responsible for
6. waits for other threads to catch up (all elements should be written at this point)
7. copies the element it's responsible for back from shared mem to global mem
NOTE: This was just a trivial example to illustrate barriers.
NOTE: Calling printf on shared memory? You need a barrier before the printf.
Global Memory

Global memory is memory that's shared between all threads on the device (GPU). Any thread
can access it at any time. Just like how you can allocate/free memory on the host (CPU), you
can allocate/free global memory on the device (GPU).

The thing to be aware of is that you cannot allocate global memory directly from the kernel. The
allocating/freeing of global memory on the device (GPU) must happen on the host (CPU).

Memory Management Functions

The memory management functions for the device (GPU) are very similar to the host (CPU)...
malloc — cudaMalloc

memcpy — cudaMemcpy

memset — cudaMemset

free — cudaFree

Remember that you must allocate device global memory on the host. You cannot allocate
memory directly in the kernel thread. This means that cudaMalloc, cudaMemcpy, etc.. can only
ever be called from the host.

For memory that sits on the host, the convention is to name the variable with a h_ prefix.
For memory that sits on the device, the convention is to name the variable with d_ prefix.



NOTE: For the full list of memory management functions, see
http://docs.nvidia.com/cuda/cuda-runtime-api/group_ CUDART__ MEMORY .html#axzz4r
HUZY4cw

Here’s an example of the memory management functions being used...

Note what’s going on in the example...

global device memory is being allocated on the host

global device memory is being free’d on the host

pointers to the allocated global device memory are being passed in as args to the kernel
memory is being copied from host to device (can’'t device memory directly from host)
memory is being copied from device to host (can’'t host memory directly from device)
memory on host is prefixed with h_ (this is just a style convention)

memory on device is prefixed with d__ (this is just a style convention)


http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#axzz4rHUZY4cw
http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#axzz4rHUZY4cw

Synchronization Barriers

There’s no way to synchronize access to global memory like you do with shared memory.

The problem is that your only guarantee is that threads within the same block will be
started/running. As such, those are the only threads you can synchronize via barriers.

If you have multiple blocks that have threads reading/writing to the same location in global
memory, there’s no guarantee that those blocks will all run at the same time. Some blocks may
have to finish before others can run (we have no control over which blocks run or how many run
at once).

We do have access to some synchronization functionality for global memory via atomics
(explained in the next section).

Atomics

Atomics (short for atomic memory operations) are special instructions that the device
implements for the purpose of fetching/storing memory atomically. Some examples include...
e Arithmetic ops — atomicAdd, atomicSub, atomiclnc, atomicDec
e Min/max ops — atomicMin, atomicMax
e Bitwise ops — atomicAnd, atomicOr, atomicXor
e Swap ops — atomicCAS, atomicExch

NOTE: Many of these atomic functions are for integers types only. Apparently one of the
issues is that there’s no ordering constraints when these atomic operations are being
applied. As such, you can’t get accurate computations for floats.

The math property of associativity doesn’t apply for floating point numbers... for example
(a+b)+c != a+(b+c) -- plug into any ¢ compiler where a=1, b=10"°, ¢c=-10". If atomics
were available for floats, you'd get different results for each run depending on the order
in which your data was computed.

If you need to implement an atomic operation that isn’t available (or for a type that isn’t
available), you can do so with atomicCAS, but it will be really awful. For example, here’s
atomicAdd written using atomicCAS...

__device ( * address, val) {
old = *address, assumed;

{

assumed = old;
old = atomicCAS(address, assumed, val + assumed);
(assumed != old);




These operations are implemented directly on the hardware. There is no special magic
happening under the hood -- the hardware is pausing threads and shifting things around so that
these atomic operations can happen.

It's not recommended you use atomics unless you really need to. They’ve been known to Kill
performance if you aren’t careful.

For more information, see
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

NOTE: Having trouble thinking about this? Think of AtomicInteger in Java. It stops one
thread from clobbering the results of another and provides access to basic instructions
like add-and-get, get-and-add, etc...

NOTE: Here’s an important note from the docs that may be handy in the future...

On GPU architectures with compute capability lower than 6.x, atomics operations done
from the GPU are atomic only with respect to that GPU. If the GPU attempts an atomic
operation to a peer GPU’s memory, the operation appears as a regular read followed by
a write to the peer GPU, and the two operations are not done as one single atomic
operation. Similarly, atomic operations from the GPU to CPU memory will not be atomic
with respect to CPU initiated atomic operations.

Compute capability 6.x introduces new type of atomics which allows developers to widen
or narrow the scope of an atomic operation. For example, atomicAdd_system
guarantees that the instruction is atomic with respect to other CPUs and GPUs in the
system. atomicAdd_block implies that the instruction is atomic only with respect atomics
from other threads in the same thread block.

NOTE: Atomics are for NVIDIA GPUs only?

CUDA Optimization

The following subsections detail optimization patterns specific to the CUDA architecture.


http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

Tiered Memory

Remember how memory is broken up into a hierarchy: local, shared, and global. The way this is
usually broken down...

e |ocal — arguments and stack variables, sits on registers or L1 cache

e Shared — shared between threads on a block, sits on SM that block is assigned to

e Global — shared between all threads, sits on GPU card itself

The general rule is, as far as speed goes: Local > Shared > Global... Local will be faster than
shared, and shared will be faster than global. As such, you should move/cache more
frequently-accessed data to faster memory.

NOTE: This is general rule... but memory access can actually be a bit more nuanced.

NOTE: Shared memory is like a CPU’s cache block, except that you have explicit control
of it.

NOTE: Even though global memory is the slowest of the 3, it’s still much faster than host
(CPU) memory.

Coalesced Global Memory Access

It's much more efficient for all threads in a block to access global memory locations that are
close together.

This basically has to do with memory caching. When a thread fetches (or stores) data in global
memory, the GPU accesses that memory in large chunks. If other threads also try to fetch global
memory data that’s near the same location, those fetches will likely fall into that same large
chunk. As such, the GPU won’t need to pull down that same large chunk because it’ll already be
there.

Typical access pattern...
e contiguous « this is good because mem being accessed is neighbouring each other
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e strided « this is bad (if too large) because a bunch of mem is skipped for each access

++++++++++++++++++++

O ELELEY
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NOTE: You can optimize the strided pattern to be coalesced. Check out Data Layout
Transformation section below.

NOTE: All of this just means that the GPU is most efficient when the threads read from
and write to contiguous memory locations at the same time.

Thread Occupancy

Occupancy refers to the number of threads that are actually running vs the number of threads
that could be running. Each SM has properties that may potentially limit the number of threads it
can run (e.g. number of cores, amount of memory, number of registers, etc..).

For example, shared memory for a thread block sits on the SM. If the SM has 48kb of shared
memory space available and your thread blocks are for 24kb of shared memory each, you're
going to be limited to 2 blocks per SM.

Another example is the number of threads per thread block. If the SM has 1568 cores but your
thread block requires 1024 threads per SM, each SM will only ever run 1 block. In this case we
can say that we have a occupancy rate of 66% -- the SMs will never use more than 1024 of their
1568 threads.



NOTE: Look up CUDA occupancy calculator -- it's a spreadsheet/tool that will tell take in
the specs of your thread block and return back how that block will perform on various
CUDA GPUs.

Thread Divergence

The GPU likes it when all your threads go through the same execution path. If threads end up
taking a different execution path, the threads that finish first will end up waiting for the longer

executing threads to catch up. This may become a problem if your threads have lots of loops

and/or control structures (e.qg. if/elseif/else, switch, for, while, do/while, etc..).

NOTE: It almost sounds like a block/SM/whatever may give the user a view that multiple
threads are executing, but internally it only executes 1 thread -- 1 instruction at a time,
but that instruction takes in a ton of different operands (supplied by each “thread”/kernel
instance). But, if this were the case, why would we need __synchthreads()?

The answer to this is explained in lesson 5. The SMs in CUDA GPUs are made up of
“warp cores.” These “warp cores” are an NVIDIA extension to the concept of SIMD
(single instruction, multiple datasets) called SIMT (single instruction, multiple threads). It
looks like SIMT is essentially the same thing as SIMD. It operates on 32 operands (max
of 32 threads per warp core), but you can turn on/off which operands are being worked
on.

For example, if you reach a if/else statement, the warp core will execute both branches --
it'll first execute the if block (only affecting the data for the threads that should be taking
the if branch), then execute the else (only affecting the data for the threads that should
be taking the if branch).

For example, imagine if you had the following if/else block in your kernel...

(threadIdx.x == 0) {

The block above looks like it will take a long time to execute only for thread 0, but this isn’t the
case. All threads will wait until thread 0 finishes before they continue executing. It doesn’t matter



that the vast majority of your threads finish the if/else quickly -- they will all pause until the
longest running thread finishes.

m= — -

L ZN IR N I

For example, imagine if you have had the following loop block in your kernel...

( i = 0; i < threadIdx.x * 1000; i++) {

val = val * val;

The same thing applies for loops. The block above looks like it'll take progressively longer to
execute as the threadldx goes up, but that isn’t the case. Threads that finish executing the loop
will just pause until the longest running thread is finishes executing the loop.

The take away here is to avoid large switches, nested if/elses, and looping by non-constants.

Thread Synchronization and Memory Access

One important fact about thread blocks is that it isn’'t always a good thing to have more threads
per block. In certain cases, having lots of threads in a thread block where __syncthreads() calls
are used will cause those threads to run slower. This is because many of the threads will be
waiting on memory access operations to complete.

This is more likely to happen if the code has poor memory access patterns (e.g. large strides or
scattered/random access).



Fast Math

Certain common operations from the C/C++ math library (math.h) may take a long time to
execute on a GPU. CUDA provides optimized math functions via built-ins/intrinsics. For
example, instead of...

e sin(),use _sin()

e cos(),use _cos()

e exp(), use__exp()

The downside to these built-in/intrinsics math functions is that you may lose a few bits of
precision (which should be okay most of the time). You can find more on intrinsics by going to
http://docs.nvidia.com/cuda/cuda-math-api/index.html.

In addition to that, you can get better execution times by using single-precision floating point vs
double-precision floating point. Avoid double-precision unless you absolutely need it (this is
common knowledge).

Memory Copy (Host s Device)

CUDA reserves a page-locked (pinned) piece of memory on the host as a staging area for
transferring data to the GPU. When you copy data from the host to the GPU, what’s actually
happening is that memory is first being copied over to that staging area, then being sent from
that staging area to the GPU.

You can avoid the staging area entirely by page-locking the part of host memory that you're
working with. If you...

e already have host memory allocated, you can page-lock it via cudaHostReqister().

e want to allocate host memory that’s page-locked, you can use cudaHostMalloc().

In addition to skipping the staging area, if you page-locked your host memory you can make use
of cudaMemCpyAsync() to transfer the memory asynchronously -- it won’t be a blocking
operation, you can do other stuff while the memory transfer completes.

Streams

A stream is a sequence of CUDA operations that will execute in-order. You can have multiple
streams in your program... the benefit being that the operations in each stream will execute as
GPU capacity becomes available, potentially executing more than one operation at once (higher
utilization).

For example, imagine you had 2 workloads. Each workload copies some data to the GPU, runs
a kernel, and then copies data back. If this was implemented normally, the operations would
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execute serially. If implemented using streams, the GPU takes care of when each operation is
performed, potentially even running multiple operations at once...

no streams
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In the above diagram, the GPU is copying over data for the 2nd workload while the kernel for
the 1st workload is running, then copying over the results of the 1st workload while the kernel
for the runs. These are the types of optimizations you can expect from using streams...

e not enough memory bandwidth utilized? copy data over for another stream.

e not enough SMs in use? run another stream’s kernel.

e etc...

NOTE: The diagram above is a common way of getting better GPU utilization when you
need to do computations on a huge amount of data (so big it won't fit into GPU memory).
Instead of allocating all of the GPU’s memory and running the kernel, allocate it in halves
then run the same kernel in 2 separate streams. While the 1st stream is running the 2nd
stream will be moving data (and vice versa). You can try maybe doing this with more
than 2 streams as well?

Some things to note about using streams...
1. if using streams, operations get queued up and run asynchronously.
2. if using streams, you must pin host memory (see memory copy section above).
3. if using streams, you must use cudaMemCpyAsync (see memory copy section above).

Check out http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams for more
information on streams. Below is a small example that show how to use stream with the CUDA

C++ compiler.
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NOTE: Need to block until all your streams are done? Check out
cudaDeviceSynchronize(). Need to block until a single stream is done? Check out
cudaStreamSynchronize(). There are also APls available for waiting on / firing off event:
cudaEventRecord(), cudaEventSynchronize(), cudaStreamWaitEvent(), and
cudaEventQuery(). You can use these event APIs directly within the kernel if you want --
look up dynamic parallelism.

Algorithm Complexity

Work Complexity vs Step Complexity

Parallel algorithms on the GPU are calculated as step complexity and work complexity...
e step complexity — complexity of algorithm if run parallelly
e work complexity — complexity of algorithm if run serially/sequentially

Imagine the following chain of work...

We can say the example has a step complexity of 3 and a work complexity of 8. Each
level/depth is a step, but each node is a piece of work. Work nodes at each step are generating
some output, and the work nodes in the following steps are that output for their input.



In the real world, this is effectively just like big O notation. Instead of saying that the work/step
complexity is some specific number, we refer to as a function of the size of the input. For
example...

e the work efficiency is proportional to sizeof(input) / O(n)

e the work efficiency is proportional to sizeof(input)? / O(n?)

e the step efficiency is proportional to log(sizeof(input)) / O(log(n)

e etc..

Work Efficiency

We can say our parallel algorithm is work efficient if it's asymptotically the same -- within a
constant factor as the work complexity of its non-parallel equivalent.

All this means is that your parallel algorithm’s complexity isn’'t more than the complexity of the
serial equivalent: if in the serial version you're looping over your array once for each element, in
the parallel version you don’t want to be looping over the entire array once for each element:
O(n) vs O(n?). This is assuming you’re doing more-or-less the same thing in the loop.

You can get a good better idea of work efficency means by reading this page
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch39.html (sections 39.1 and
39.1.1). I've pasted the important most important part below...

A simple and common parallel algorithm building block is the all-prefix-sums operation. In this
chapter, we define and illustrate the operation, and we discuss in detalil its efficient
implementation using NVIDIA CUDA. Blelloch (1990) describes all-prefix-sums as a good
example of a computation that seems inherently sequential, but for which there is an efficient
parallel algorithm. He defines the all-prefix-sums operation as follows:

The all-prefix-sums operation takes a binary associative operator @ with identity I, and
an array of n elements

[ag, @4,..0s An_q]
and returns the array

[, a, (8, @ ay),...(a,Pa,; ®..Oa )

For example, if © is addition, then the all-prefix-sums operation on the array
[3170416 3]

would return
[03411111516 22].

The all-prefix-sums operation on an array of data is commonly known as scan. We use this
simpler terminology (which comes from the APL programming language [Iverson 1962]) for the
remainder of this chapter. The scan just defined is an exclusive scan, because each element j of
the result is the sum of all elements up to but not including j in the input array. In an inclusive
scan, all elements including j are summed. An exclusive scan can be generated from an inclusive
scan by shifting the resulting array right by one element and inserting the identity. Likewise, an
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inclusive scan can be generated from an exclusive scan by shifting the resulting array left and
inserting at the end the sum of the last element of the scan and the last element of the input array
(Blelloch 1990). For the remainder of this chapter, we focus on the implementation of exclusive
scan and refer to it simply as "scan" unless otherwise specified.

There are many uses for scan, including, but not limited to, sorting, lexical analysis, string
comparison, polynomial evaluation, stream compaction, and building histograms and data
structures (graphs, trees, and so on) in parallel. For example applications, we refer the reader to
the survey by Blelloch (1990). In this chapter, we cover summed-area tables (used for
variable-width image filtering), stream compaction, and radix sort.

In general, all-prefix-sums can be used to convert certain sequential computations into
equivalent, but parallel, computations...

/I sequential version
out[0] = 0;
for j from 1 to n do
out[j] = out[j-1] + f(in[j-11);

// parallel version
forall j in parallel do

tempfj] = f(in[i]);
all_prefix_sums(out, temp);

Implementing a sequential version of scan (that could be run in a single thread on a CPU, for
example) is trivial. We simply loop over all the elements in the input array and add the value of
the previous element of the input array to the sum computed for the previous element of the
output array, and write the sum to the current element of the output array.

out[0]:=0
fork:=1tondo
out[k] := in[k-1] + out[k-1]

This code performs exactly n adds for an array of length n; this is the minimum number of adds
required to produce the scanned array. When we develop our parallel version of scan, we would
like it to be work-efficient. A parallel computation is work-efficient if it does asymptotically no more
work (add operations, in this case) than the sequential version. In other words the two
implementations should have the same work complexity, O(n).

Algorithm Primitives

The following subsections define a common set of primitives for highly parallel algorithms.

Map

A map operation takes each data element (e.g. elements of an array, entries in a matrix, pixels
in an image, etc...) and performs the same computational task on that element to produce a
result. There’s a one-to-one correspondence between input and output.
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Potential use-cases...
1. transforming a number via some equation
turning an image to grayscale
blurring an image
transposing an 2d matrix
breaking up a struct — array of structures (AOS) to a structure of arrays (SOA)
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Special Cases

Gather

A gather operation is a map, but there’s only a one-to-one relationship from output to input.
Every output location has a corresponding input location, but not every input location has a
corresponding output location.

puts—| | | | [ | | ]]]

OFmMIDIH

Outputs

NOTE: See the section on “Coalesced Global Memory Access” to see why this can be a
bad pattern.



Scatter

A gather operation is a map, but there’s only a one-to-one relationship from input to output.
Every input location has a corresponding output location, but not every output location has a
corresponding input location.

Inputs —
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NOTE: The output location isn’t guaranteed to be unique. If there’s a possibility for
multiple threads to write to the same location (remember that all threads run at the same
time), you’re going to run into problems. It hasn’t been clearly explained how to handle
this yet.

NOTE: See the section on “Coalesced Global Memory Access” to see why this can be a
bad pattern if not implemented correctly.

NOTE: One of the use-cases described for this was applying an image. How exactly can
this be used to blur an image? We can take the input pixel and add a 1/3rd of it to each

output.

Stencil

A stencil operation is where the thread reads input from a fixed neighbourhood within in array
and produces some output. This is useful for things like image processing.
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Transpose

A transpose operation is a plain old transpose operation such as ones you would do with a
matrix. It can be considered a special case of either gather or scatter.
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Transpose operations can also be used for reordering or breaking up a structure -- converting
an array of structures (AOS) to a structure of arrays (SOA). Imagine the following struct...

struct my_struct {
float f;
inti;

We can convert my_struct[1000] to float[1000] + int[1000]. It's useful to break up structs like this
if we’re doing heavy computations that mostly access certain bits (e.g. the floats). This is called
the principle of locality.

NOTE: We can also consider reordering the members of a struct as a transpose
operation (reordering vs purely breaking them apart).

Reduce

A reduce operation is where threads aggregate a bunch of data together. This is done in
multiple steps and leads to a single output.
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The operator you use in your reduce must follow these rules...

binary < takes in 2 inputs

The binary property essentially halves the data at each step. The operator takes in 2
inputs but gets back 1 output, so you can keep running it iteratively until you end up with
your final output.

associative «— order in which operator is applied doesn’t matter

Associative means you can choose to do your operations in any order. For example, if
your operator was addition and your inputs were a, b, and c, you could add them in any
order and get to the same result. If a=1, b=2, c=3...

(1+2)+3=6

1+(2+3)=6

Why is this needed? It guarantees that the same result is given back regardless of the
order in which threads run.

NOTE: We make the assumption that associativity implies commutativity. Commutativity
means that the operands going in can be in any order. For example, a+b=b+a.

Some ops that pass the requirements...

addition (+)
multiplication (*)
bitwise and
bitwise or
min/max

Some ops that fail the requirements:

subtraction (-) « not associative... (a-b)-c = a-(b-c)

division (/) < not associative... (a/b)/c != a/(b/c)

exponent « not associative... pow(pow(a,b),c) != pow(a,pow(b,c))
factorial (!) < factorial takes 1 input, not 2... e.g. 5!



Potential use-cases...
1. finding min or max of a large set of numbers
2. adding a bunch of numbers together

Implementations

Serial

Below is a CPU implementation of reduce. The implementation is using addition (+) as its
operator...

Output is...

Parallel

NOTE: Remember the difference between work and step. Work refers to a unit of work.
Step refers to multiple units of work being done in parallel.

For example, imagine you wanted to reduce 8 numbers via the addition operator. Conceptually,
here’s how the entire process would look...

1 42 21 04 1

Notice what’s happening here. There are 3 steps. The work in each step is being done in
parallel...
1. 4 threads will run in parallel, each will perform one of the following ops:
1+4=5
2+2=4
1+0=1
4+1=5



2. 2 threads will run in parallel, each will perform one of the following ops:
5+4=9
1+5=6

3. 1 thread will run, it will perform the following op:
9+6=15

If you were to code this example up, it would just be 3 launches of a kernel that adds 2 numbers
together...

Essentially, this means we can reduce a large amount of inputs in a small number of steps. In
our example, we summed up 8 elements in 3 steps. If we wanted to sum up 65536 elements
instead, that would come out to 16 steps.

The work complexity of reduce is around O(n-1).
The step complexity of reduce is around O(log,(n)).

NOTE: Having trouble reasoning out the complexity for this? Imagine we had 8 inputs
and we were reducing it using the + operator...

8 inputs (this is n)
7 work operations (this is n-1)
3 step operations (this is log,(n))



NOTE: As an optimization, you can always cluster together multiple runs of the operator
in your thread. For example, instead of just adding 2 inputs together, you can just to add
10 or 20 inputs.

Practical Considerations

Number of Parallel Units

What happens if we try to reduce a massive amount of elements (e.g. a billion elements)? At
each step, our GPU can only run so many threads in parallel. If we go past this cap, the GPU
may internally break steps into multiple pieces that it runs sequentially. Look up “Brent’s
theorem” for a deeper dive into this topic.

Floating Point Arithmetic / Non-associative Operators

What happens if you choose an operator that isn’t associative? It may still be okay to use this
pattern. For example, think of floating point numbers. Arithmetic on floating point numbers is not
associative. This doesn’t mean you can’t use reduce, it just means that you may not get
consistent results between runs for the same inputs. This is due to the fact there is no
guarantee that threads will execute in the same order. You may be processing in a different
order each time.

NOTE: If you're having trouble thinking of how floating point arithmetic is not associative,
try (a+b)+c != a+(b+c) -- plug into any ¢ compiler where a=1, b=10"°, c=-10".

Scan

A scan operation is that transforms an array of elements such that each element becomes the
aggregate of all elements preceding it.

NOTE: There is no thread representation diagram here because this is a combination of
other patterns and there are several implementations of it.

The operator you use for aggregation in your scan must follow these rules...
e Dbinary « takes in 2 inputs
e associative < order in which operator is applied doesn’t matter
e identity «— must have some constant value | where f(l,b)=b

This rules are similar to the rules for reduce, but with the additional restriction of needing to
have an identity constant. If you need more information on what binary and associativity do, see
the reduce section. If you’re wondering about identity, here are the identity values of common
operators...

e addition (+) —» 0 e.g. 5+0=5

e multiplication (*) -1 e.g.5*1=5



e binaryor -0 e.g. or(1,0)=1 or(0,0)=0

e binary and — 1 e.g. and(0,1)=0 and(1,1)=1
e max — MIN_INT e.g. max(MIN_INT, 10)=10
e min —> MAX_INT e.g. min(MAX_INT, 10)=10

NOTE: MIN_INT/MAX_INT are defined by the type you’re working with. For example, if
you’re working with an unsigned char, MIN_INT=0 and MAX_INT=0xFF.

Having trouble understanding this? Imagine that we wanted to do a scan of the array [1, 2, 3, 4]
using + as the operator. Here’s how we calculate each element of the output array...
[0, 1, 142, 1+2+3] — [0, 1, 3, 6]

For each element, we’re aggregating (adding in this case) all the elements preceding it. The first
element has nothing preceding it so it’s set to the identity.

Potential use-cases...
1. cumulative distribution function

2. quicksort
3. etc..
Variations

There are actually 2 forms of scan: inclusive and exclusive...
e Inclusive: each element will be the aggregate of all elements before and including it.
[ay; a4, A, 4] — [8,, (8574,),...,(a,7a,7...7a,_,)]
e Exclusive: each element will be the aggregate of all elements before it.
[ap Ay, a4 — [, &y, (8,7a,),....(a,7a,?...7a, ,)]

Replace ? with the operator of your choice (e.g. +, *, etc..) and | with the identity for that
operator. Remember that the operator must have an identity, must be binary, and must be
associativet+tcommutative.

NOTE: If you wanted to be super explicit, you can write exclusive as...

[ay Ay, a4 = [I, (173,), (17a,?a,),...,(17a,7a,?...7a,__,)]

If you have trouble thinking about this, try use the operator + (identity is 0) or * (identity is
1). It should work.

For example, imagine you had the array [10, 4, 5, 8] and you wanted to scan over it using + as
the operator...

e Inclusive: [10, (10+4), (10+4+5), (10+4+5), (10+4+5+38)] — [10, 14, 19, 27]

e Exclusive: [0, 10, (10+4), (10+4+5), (10+4+5)] — [0, 10, 14, 19]



NOTE: Remember that the form for exclusive puts the identity for addition as the first
element and doesn’t take into account the last element. Remember that the identity for
addition is 0: x+0=x.

What'’s the point of having 2 different variations of a scan? As far as | know, there are 2 different
algorithms for performing a scan in parallel (discussed in later section). One of the algorithms
produces an exclusive result, while the other algorithm produces an inclusive result.
It seems fairly trivial to convert one type of result to the other 2...

e | — E: shift right by 1 then add a 0 to the last element

e E — I: shift left by 1 then do a reduce over the original array to get last element

NOTE: Remember that shifting a large array left/right by 1 is a super fast thing to do in
parallel computing.

Implementations

Serial

Below is a CPU implementation of an inclusive scan. The implementation is using addition (+)
as its operator...

Outputis...

Parallel (Naive)

A naive parallel implementation for scan would be to use reduce for each element on the input
array, where the reduce targets everything up to and including that element.

For example, imagine you were to perform an inclusive scan on the array [10, 4, 5, 8] using + as
the operator...

e Index 0: reduce([10], +)

e Index 1: reduce([10,4], +)

e Index 2: reduce([10,4,5], +)



e Index 3: reduce([10,4,5,8], +)

wla]s]e | Input

10 ] 14 | 18 | 27 | — Output

Note that you can perform multiple reduces in parallel. Practically speaking, you start from index
0 of the input array and work your way up until you reach a cap for how many reduces/threads
you can run. Then, you’ll then have to wait for those reduces to finish before you can move on
to the next group of elements. For the next group of elements from the input array, you can
make use of the last element you computed in the previous group.

NOTE: Having trouble visualizing this? Imagine that the 3rd element in the example was
the last element we were able to do a reduce for before you ran out of GPU resources.
For the next set of elements, you can directly make use of the result of that 3rd
element...

reduce([19, 8], +) vs reduce([10,4,5,8], +)

The work complexity of scan is around O(n?).
The step complexity of scan is around O(log(n))

NOTE: Remember the difference between work and step. Work refers to a unit of work.
Step refers to multiple units of work being done in parallel.

The step complexity for scan is the same as the step complexity for reduce because technically
we're just running a whole bunch of reductions at once. The work complexity for scan is n?
because we go over the elements of the input array once per reduce (we don’t go over all
elements per reduce, but we can just generalize this as n?).

The n? work complexity makes this algorithm “ridiculously inefficient.” As such, you should use
one of the other less-trivial parallel algorithms discussed in later sections.

Parallel (Hillis-Steele)

Hillis-Steele is a parallel implementation of inclusive scan.

The high-level steps for Hillis-Steele scan algorithm are... at each parallel step
1. copy the first 2%? elements from the input array
2. add each remaining element with the element that’s 25 to its left



Here’s a diagram showing exactly what the algorithm does for the input array [1,2,3,4,5,6,7,8]...
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Note that this is much more efficient than the naive parallel implementation of scan. In the case
of our example above, there are 8 elements for our scan. Using this implementation, we’re
doing 3 reduce-like operations. If we used our naive parallel implementation, we’'d be doing 8
reduce operations.

Below is a Java implementation of the algorithm written in non-parallel form. The example takes
in the array [1,2,3,4,5,6,7,8] and performs a scan on it using addition (+) as the operator...




System.out.println(Arrays.toString(output));

input = output;
n :(:= ;

Output of the code is...

The last line of the output is the correct result. Although the code above is non-parallel, it should
be obvious what parts you can run in parallel: pretty much every iteration of the while loop can

be run as a single parallel step.

NOTE: Although this is an inclusive scan, it’s trivial to convert it to an exclusive scan:
shift the final output right by 1 and put the identity value at index 0.

The step complexity is O(log(n))
The work complexity is O(n*log(n))

NOTE: Remember the difference between work and step. Work refers to a unit of work.
Step refers to multiple units of work being done in parallel.

If you’re having trouble visualizing this, just look at our example. We had an input size of 8 but
the number of parallel steps were 3. Try it with smaller or larger step sizes, you should see a
pattern like this...
e input size of 2 = 1 parallel step
input size of 4 = 2 parallel steps
input size of 8 = 3 parallel steps
input size of 16 = 4 parallel steps
etc...

You can see how the number of steps here will log,(n) where n is the size of the input. We
generalize this a log(n) when we specify the step complexity.

Parallel (Blelloch)

Blelloch is a parallel implementation of exclusive scan.

The high-level steps for Blelloch scan algorithm are...



1. perform reduce on the input array up to the point where there are only have 2 elements,
saving the intermediate results at each step of the reduce

2. set the last element of the last step of the reduce to the identity

down-sweep the array back out to the original input size

4. perform one final down-sweep on the array without expanding it

w

NOTE: Remember that the scan operator you use must have an identity value
associated with it. If you don’t remember what this is, read the main section of the scan
section.

What is a down-sweep and how does it work? You can think of the initial reduce as an
up-sweep. When we expand it back out to calculate the scan, we call that the down-sweep.

Remember that we saved all the intermediate values of our reduce. So when we perform a
down-sweep step, we begin by doubling the size of the array and copying over the missing
elements from the previous reduce step. For example....

4 1 7 1 reduce step n-1
5 8 reduce step n
4 5 7 8 copy portion of down-sweep step 1

NOTE: Why do we have 2 elements at the end of our reduce? Remember that in step 1
we say that we stop our reduce when we have 2 elements.

Once that’'s complete, we perform a down-sweep operator on each pair of newly introduced
elements. A down-sweep operator copies the right value over to the left, and sets the left value
to left OP right. If we were to apply the down-sweep operator to the example above (note that
we’re using addition as our operator), it would look like this...



4 1 7 1 reduce step n-1

] reduce step n

] 5 T 4 copy portion of down-sweep step 1

7 5 11 8 operator portion of down-sweep step 1

Here’s a diagram showing exactly what the algorithm does for the input array [1,2,3,4,5,6,7,8]
using addition (+) as the operator...
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\ step2
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3. downsweep step5
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stepb

— 0 1 I 3 3 5 L] 7 21

NOTE: Remember that that the identity for addition is O.



NOTE: Look at the last step... we need to apply the down sweep operator to each pair of
elements in the final array one last time before we get the result we expect for a scan.

Note that this is much more efficient than the naive parallel implementation of scan. In the case
of our example above, there are 8 elements for our scan. Using this implementation, we're
effectively just doing 1 reduce operation and 1 downsweep operation. That’s around 5 to 6
parallel steps. If we used our naive parallel implementation, we’d be doing 8 reduce operations.
In addition to that, we’re doing much less work than the naive parallel implementation (the scan
operator is applied way less times).

Below is a Java implementation of the algorithm written in non-parallel form. The example takes
in the array [1,2,3,4,5,6,7,8] and performs a scan on it using addition (+) as the operator...







System.out.println(Arrays.toString(last_output));

last _output;

Outputis...

Reducing...

[1, 2,
[3, 7,
[10, 26]

Resetting final element to

[1e, @]

Downsweeping. ..

[3,

The last line of the output is the correct result. Although the code above is non-parallel, it should
be obvious what parts you can run in parallel.

NOTE: Although this is an exclusive scan, it’s trivial to convert it to an inclusive scan:
shift the final results left by 1 and perform a reduce on the original input to get the value
for the last element.

The step complexity is O(log(n))
The work complexity is O(n)

NOTE: Remember the difference between work and step. Work refers to a unit of work.
Step refers to multiple units of work being done in parallel.

Note that this is the same work and step complexity of a reduce. A downsweep is the opposite
of a reduce (we're expanding out rather than reducing), but it's effectively the same amount of
work with the same amount of steps. As such, we can say that, for the same amount of data,
we’re doing 2 reduce operations worth of steps and work. That just gets generalized down to the
same work and step complexity as a reduce.

That work and step complexity may seem great, but remember that we have to store the
intermediate values of the initial reduce that we do, which means that this is going to be much
more memory inefficient.



Practical Considerations

Number of Parallel Units and Algorithm Choice

Given the same input array, of the two parallel implementations of scan...
e Hillis-Steele does less parallel steps but more work
e Blelloch does more parallel steps but less work

So which should you choose? It depends on the amount of work you have and the number of
parallel units in your GPU. At each step, your GPU can only run so many threads in parallel. If it
goes past this cap, the GPU may internally break steps into multiple pieces that it runs
sequentially.

If you know that you have more than enough parallel units to handle all the work in each step,
use Hillis-Steele. There will be more work being performed per parallel step (more threads per
step), but there will be fewer parallel steps and each step will actually run in parallel instead of
being broken up.

If you know that you don’t have enough parallel units to handle all the work in each step, go for
Blelloch. There will be more parallel steps, but much less work will be happening in each
parallel step (less threads per step). As such, it'll be far more likely that each step will actually
run in parallel instead of being broken up.

Look up “Brent’s theorem” for a deeper dive into this topic.

Floating Point Arithmetic / Non-associative Operators

This is from the section on reduce, but it applies to scan as well...

What happens if you choose an operator that isn’t associative? It may still be okay to use this
pattern. For example, think of floating point numbers. Arithmetic on floating point numbers is not
associative. This doesn’t mean you can'’t use scan, it just means that you may not get consistent
results between runs for the same inputs. This is due to the fact there is no guarantee that
threads will execute in the same order. You may be processing in a different order each time.

NOTE: If you’re having trouble thinking of how floating point arithmetic is not associative,
try (a+b)+c != a+(b+c) -- plug into any ¢ compiler where a=1, b=10"°, c=-10".

Segmented Scan

Recall that kernels run one at a time, back-to-back. In a lot of cases you'll be doing scans for
many small arrays instead of a few large arrays. In those cases, you can try to implement a
technique known as segment scan.



Segmented scan involves concatenating your input arrays together and then having a
secondary array that identifies segment heads (where each individual array starts in the
concatenated array). The kernel will use this information to scan all the arrays at once...
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NOTE: The assumption here seems to be that Hillis-Steele and Blelloch can be tweaked
to handle this? | still need to work out how to do this.

Algorithm Patterns

The following subsections discusses how common algorithms can be implemented in parallel.

Histogram

A histogram is where, for each input, you dump that input into a bucket based on the range that
it sits in.

For example, let’s say you have the test scores for 50 students. You want to split those scores
up into 4 buckets to see how well/poorly the students did overall: 0-25, 25-50, 50-75, 75-100.
For each test score, find out what bucket that test score is in and add 1 to it...

025 25-50 50-T5 TE100

Serial

Python example...




Outputis...

Parallel (Atomic Add)

Launch a thread for each element and have each thread...
1. calculate which bucket the inputis in
2. perform an atomicAdd on to that bucket
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H]H HYH]JH]JH]JH]JH]H H{H|H]|H H H HlH H H HyHI| B H H
RIE RIRE]JR]JR]JR]IR]R RIR|R|R R|R RIE R|R RIRJIR]R R
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This is a really bad idea if you have a low number of buckets. Because many threads will be
trying to add to that same bucket at the same time, threads adding to the same bucket will have
to queue up and perform the add sequentially. This kills the whole point of having many parallel
threads.

Python example...




Outputis...

Parallel (Thread Local Histogram and Atomic Add)

Launch a thread for each n elements and have each thread...
1. calculate the histogram locally just for those n elements (sequentially)
2. for each bucket in the local histogram, atomicAdd it to the corresponding global
histogram bucket

|

THREAD

THREAD

For a low bucket size, this is better than the first parallel method because there won't be as
much contention (there are much less atomicAdds happening). On the down side, we’re
potentially losing some parallelism because each thread is doing a bunch of work sequentially.
Depending on how you set things up (number of parallel threads the GPU can run, cost of



booting up a new thread, how much the contention from atomicAdd costs, etc..), this may not be
a problem.

Python example...




Output is...

Parallel (Thread Local Histogram and Reduce)

Launch a thread for each n elements and have each thread calculate the histogram locally just
for those n elements (sequentially). Then, once all the local histograms have been computed,
you run them through a reduce (addition) to get the global histogram.

The trivial way to do reduce would be, for each index i, run a reduce for that element across all
local histograms and put it in the corresponding index for the global histogram...

|

THREAD

THREAD

A less-trivial way to do reduce would be to treat each local histogram as a vector/matrix, and
use vector/matrix addition as your reduce operator. Essentially, we're going to be doing a single
reduce because we’ll be treating each local histogram as an input element for the reduce. This
will spawn less threads but it'll do more work per thread -- whether this is better or worse
depends on your setup.



|

THREAD THREAD

Mmoo mI R

NOTE: Remember that reduce requires an operator that takes 2 inputs (binary) and is
associative/commutative. The vector/matrix addition meets both criteria.

Python example...







Outputis...

Compact (Filter)

Compact is when you filter out elements from your data based on some condition/predicate.
Most of the time this is referred to as just compact, because technically the dataset is being
compacted by removing elements that aren’t needed for further computations down the line...

1. test 1o see which elements
should be cilled
(filter)

2. parform cull
{compact)

This becomes a useful operation if you’re going to be doing a non-trivial amount of computation
on each element AND it’s inexpensive (relatively) to find out which elements to avoid
computations on.

Serial

Python example...




Outputis...

Parallel

Filter and compact is an application of several parallel primitives. The steps are as follows...
1. map through a predicate -- for each element, output 1 to keep and 0 to discard
2. exclusive scan the output of 1 -- this generates address offsets
3. scatter the data -- for each element, if we decided to keep it in step1, copy it to the
address offset we computed in step 2

For example, imagine we had an input array of numbers and we wanted to get rid of all the odd
numbers....

The first step is to take your input elements and map it through a predicate: generating 1s for
the elements we want to keep (even numbers) and 0 for the elements we want to discard (odd
numbers)...

«— Input

«— Output of Step 1

The second step is to take the output of step 1 and perform an exclusive scan on it. This will
generate a unique address offset for each element that we want to keep...



1 1] 1] « Output of Step 1

EXC
SCAN

0 1] 2] « Qutput of Step 2

NOTE: Having trouble understanding what’s going on here? Look at the elements in our
original input array. For each element that we determined we want to keep (is even), the
corresponding location in the output of our exclusive scan points to where we should
move it to. So...

e offset 0 is where we should put the 1st element (2)

o offset 1 is where we should put the 2nd element (0)

e offset 2 is where we should put the 3rd element (6)

The third step is to scatter the elements based on the outputs of step 1 and step 2. Essentially
what we do is... for each elem, if we determined that we want to keep it in step 1, we move/copy
it to the offset we determined in step 2...

«— Qutput of Step 1 (filter)

«— |nput
«— Qutput of Step 2 (offsets)

«— QOutput of Step 3 (compact)

NOTE: Remember that scatter is just a special case of map. All it means is that the each
output will have a corresponding input, but not every input will have a corresponding
output.

Python example...










Allocation

Allocation is for when each element in your dataset might get split up into many elements and
the number of elements isn’t fixed or known beforehand. It figures out your final destination
array size and where each new element will sit.

1. Tigure: oul how many new
elements each existing elemant
will produce

L]
L]
]

2. parform expansion

NOTE: If each element was split into some fixed size or the size, you could simply
preallocate the space. Also, you could always preallocate the maximum possible size of
your destination array (assuming you knew what that was), but that's considered
wasteful.

For example, imagine that each element in your dataset was a sentence. You want to split each
sentence up by space such that your dataset becomes the individual words that make up the
sentences. This would be an allocation operation.

The mavie was greall

Wy caki was made with buthancream

Another example is culling triangles. During the 3D rendering process, you need to clip triangles
that intersect with bounds of your viewport. The problem is that when you clip a triangle, you



might end up with shapes that aren’t triangles (e.g. quads and n-gons). Those non-triangle
shapes need to be split up back into triangles so they can be drawn using efficient algorithms.

zlﬁ

v v

v

Python example...

Serial

in_data

print(
[print( + X)

out data = []
X in_data:
out_data += x.split()

print(
[print( + X) out_data]

Outputis...

original...

Hi Steve, this Bob

The movie was great!

My cake was made buttercream
expanded. ..

Hi

Steve,
this

Bob
The
movie




Parallel

Allocation is an application of several parallel primitives. The steps are as follows...
1. map to split counts -- for each element, output how many elements it splits into
2. exclusive scan the output of 1 -- this generates address offsets
3. scatter the data -- for each element, if we decided to keep it in step1, copy it to the
address offset we computed in step 2

Notice what’s happening here. This is almost exactly the same as compact. The only difference
is that, in step 1 we’re finding out the number of elements to create instead of testing to see if
we should keep the element.

For example, imagine we had an input array of strings. We want to split each string by space...

The first step is to take your input elements and map it through a kernel that generates how
many outputs each element will have. In this case, it will have the number of words in the
sentence...

The movie was greal! 4

My cake was made with buttercream [+

The second step is to take the output of step 1 and perform an exclusive scan on it. This will
generate a unique address offset for the new elements (address offsets for the words in our
sentences)...



iy
EXC
SCAN

NOTE: Having trouble understanding what’s going on here? Look at the output of our
exclusive scan. It tell us where we should start putting the words for each sentence. So
the words from...

e sentence 1 (5 words) will start at offset 0 and end at offset 4

e sentence 2 (4 words) will start at offset 5 and end at offset 8

e sentence 3 (6 words) will start at offset 9 and end at offset 14

The third step is to scatter the elements based on the outputs of steps 1 and 2. This is where we
perform the actual splitting. From step 2, we know how many elements our final destination
array will have. We can allocate the correct number of elements, then run a kernel splits up
each sentence copies the results to the destination array (at the offset determined in step 2)...




«— Qutput of Step 3 (allocate)
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NOTE: Remember that scatter is just a special case of map. All it means is that the each
output will have a corresponding input, but not every input will have a corresponding
output.

Python example...
NOTE: This is an awful example, but there’s enough to show the different steps of
allocate.
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Sparse Matrix Vector Multiplication (SpMV)

Sparse Matrix Vector Multiplication (SpMV) is when you multiply a sparse matrix with a vector.

What is a sparse matrix? A sparse matrix is a matrix where the majority of elements are O...
a 00 0 0O
000D O0 ¢
0 00O0GCdFO

Typically, if you were do a matrix vector multiplication, it would look something like this...

a 0 0 x ax + 0y + Oc
0 b 0|yl =|0x+by+0c
0 0 ¢ z 0z + Oy + cz

Notice that in the example above, the matrix is sparse: many of the elements are 0. The
elements that are 0 still require the same amount of work to compute but ultimately contribute
nothing to the final result...

We can avoid holding onto and computing these 0s by using a structure called compressed
sparse row (CSR) to represent our matrix. CSR is comprised of 3 arrays...

e values — non-zero elements of the matrix

e columns — which matrix column each of elements in values are in

e row pointers — index in values of the starting element of each matrix row

So for example, here is the CSR representation of the following matrix...

a 0
0 0
0 0

S OO
oS o O

0
c
0

QL O O


https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Bbmatrix%7D%20a%20%26%200%20%26%200%20%26%200%20%26%200%20%26%200%20%5C%5C%200%20%26%200%20%26%200%20%26%20b%20%26%200%20%26%20c%20%5C%5C%200%20%26%200%20%26%200%20%26%200%20%26%20d%20%26%200%20%5Cend%7Bbmatrix%7D
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Bbmatrix%7D%20a%20%26%200%20%26%200%20%5C%5C%200%20%26%20b%20%26%200%20%5C%5C%200%20%26%200%20%26%20c%20%5Cend%7Bbmatrix%7D%20%5Ccdot%20%5Cbegin%7Bbmatrix%7D%20x%20%5C%5C%20y%20%5C%5C%20z%20%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%20ax%20%2B%200y%20%2B%200c%20%5C%5C%200x%20%2B%20by%20%2B%200c%20%5C%5C%200x%20%2B%200y%20%2B%20cz%20%5Cend%7Bbmatrix%7D
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Bbmatrix%7D%20a%20%26%200%20%26%200%20%26%200%20%26%200%20%26%200%20%5C%5C%200%20%26%200%20%26%200%20%26%20b%20%26%200%20%26%20c%20%5C%5C%200%20%26%200%20%26%200%20%26%200%20%26%20d%20%26%200%20%5Cend%7Bbmatrix%7D

values — [a, b, c, d]
columns — [0, 3, 5, 4]
row pointers — [0, 1, 3]

With CSR, we have quick access to the non-zero matrix elements along with their location in the
matrix. CSRs are important for both parallel implementation and serial implementation of SpMV.
This will be discussed further in the parallel subsection.

There are many cases in the wild where you’ll need to deal with sparse matrices. Some
examples are...
e recommender systems (e.g. Google’s pagerank or NetFlix's recommendations)
e simulations
e graphics
e machine learning

Serial

Python example...







]
11

Parallel

SpMV is an application of several primitives. The steps are as follows...
1. map the CSR column array to the corresponding values in the vector
2. map the CSR value array such that each element is multiplied by the corresponding
element in step 1’s output
3. for each CSR row segment, reduce the corresponding part of step 3’s output by addition

For example, imagine that we wanted to multiply the following matrix and vector together...

310 1

010 9
0 00 3

010

Before we do anything, we need to get our matrix into compressed sparse row (CSR) format.
The high-level steps to convert a matrix to CSR was covered in the main section, so | won’t go
over it again. Once we convert the matrix to CSR format, it should look like this...

csr.values — [3,1,1,1]

csr.columns — [0,1,1,0]

csr.rowpointers —» [0, 2, -1, 3]

NOTE: I'm not going to cover it here, but it’s fairly simple to convert a matrix to CSR in
parallel. It boils doing to doing map(s) + compact. It’s fairly simple to figure out.

NOTE: Why is the 2nd element of csr.rowpointers -1? Because the entire 3rd row is 0s,

which means there is no index in csr.values for row 3.

The first step is to map the csr.columns to the corresponding values in the vector. For each
element in the csr.columns (c), we’re mapping it to vector]c]...


https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Bbmatrix%7D%203%20%26%201%20%26%200%20%5C%5C%200%20%26%201%20%26%200%20%5C%5C%200%20%26%200%20%26%200%20%5C%5C%200%20%26%201%20%26%200%20%5Cend%7Bbmatrix%7D%20%5Ccdot%20%5Cbegin%7Bbmatrix%7D%201%20%5C%5C%202%20%5C%5C%203%20%5Cend%7Bbmatrix%7D

«— ¢sr.columns
defines index of vector 1o copy from for each location

— vector
vector we're multiplying our sparse matrix by

«— output
predty much Boils down o output(l] = vectorcolumn(i]]

The second step is to map csr.values such that each element is multiplied by the corresponding
element in step 1’s output...

csrvalues — | 3| 1|11 1lz2]2]2| « output of step1
aflza]z2| 2|« output
oulpul[i] = esrvalues[i] * steploutput]i]

The third step is to break up the output of step 2 based on csr.rowpointer, and perform an
reduce (using add operator) on each of those segments...

o213 «— csr.rowpointers
pointers into csr.values that defines where
\ \ each row in the matrix starts
3|2 2 2 +— output of step2

broken up by the csr.rowpainters ...
ramambar that this is just csrovaluas

multiplied by the corresponding values in
vector
REDUCE REDUCE

5 2 2 «— output

this ks the resull of the multiplication. ..
note that since we had no non-zero
elaments in the 3rd row, it implicitly got set
to 0

NOTE: For this step... instead of reducing each segment independently, you can try
using a segmented reduce or a segmented scan (if you use scan you would use the final



element of the result). Remember that kernels run one a time back-to-back. Using a
segmented reduce/scan means less kernel launches (potentially faster results). The
reason | didn’t do this is because | don’t know how to implement segmented reduce/scan
yet. It would probably complicate the example as well. For more information see the
segmented scan section.

Notice how this all fits together. The entire multiplication operation is computed like this...
3 10 3-1+1-2+0-3 )
0-1+1-240-3| |2
0-1+0-2+0-3| |0
0-1+1-2+0-3 2

W N =
I

0
0
0

_ O =

0
0
0

The zeros in the matrix contribute nothing to the final result, but still require work to compute. By
converting the matrix to CSR format, we’re avoiding all the zeros in the matrix...

a3 1 ¥ I

X 1 X |,

XXX 3

X 1 x v

Steps 1 and 2 does all the multiplications required to compute the final results...
3 1 ¥ ) 3-1+[1-2+D=3

X 1K || _ |P<L+2+D

KX X 3 <L+ DL+ DT

X1 X b D= +(1-2+ D]

Step 3 adds up the multiplications done in steps1 and 2, by row, to get the final result...
3 1K B-1+0 . 2+ |H

X1 ¥ || [P 2+<tf—s2

. (N 2 D> + DD -+ D] 0

X1 K v DL (L 2 H-Bg—>{2

Python example...



https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Bbmatrix%7D%203%20%26%201%20%26%200%20%5C%5C%200%20%26%201%20%26%200%20%5C%5C%200%20%26%200%20%26%200%20%5C%5C%200%20%26%201%20%26%200%20%5Cend%7Bbmatrix%7D%20%5Ccdot%20%5Cbegin%7Bbmatrix%7D%201%20%5C%5C%202%20%5C%5C%203%20%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%203%20%5Ccdot%201%20%2B%201%20%5Ccdot%202%20%2B%200%20%5Ccdot%203%20%5C%5C%200%20%5Ccdot%201%20%2B%201%20%5Ccdot%202%20%2B%200%20%5Ccdot%203%20%5C%5C%200%20%5Ccdot%201%20%2B%200%20%5Ccdot%202%20%2B%200%20%5Ccdot%203%20%5C%5C%200%20%5Ccdot%201%20%2B%201%20%5Ccdot%202%20%2B%200%20%5Ccdot%203%20%5Cend%7Bbmatrix%7D%20%3D%20%5Cbegin%7Bbmatrix%7D%205%20%5C%5C%202%20%5C%5C%200%20%5C%5C%202%20%5Cend%7Bbmatrix%7D










Sorting Networks

Sorting networks are networks that take a fixed number of inputs, perform a fixed number of
compare-and-swap operations on those inputs, and ultimately output the inputs as a sorted list.

For example, here’s a sorting network being used to sort a 2 element list. This is the simplest
case of a sorting network...

Here’s another example where 4 elements are being sorted. Note that as long as the
compare-and-swaps aren't hitting the same element, they can be grouped into the same parallel
step. In the example below, we can perform everything in 3 parallel steps.

stepi L |
slepd |—|

slepd
NOTE: Look what’s happening in the network. It isn’t limited to the input [5,1,0,1]. It will
sort any input of size 4.

Sorting networks are often referred to as oblivious. This is because, unlike other more complex
sorting algorithms, they don’t make decisions based off of the data they encounter (e.g.



quicksort). Instead, they’re making fixed decisions as to what to compare-and-swap at each
parallel step.

This property makes them a popular choice for implementing in hardware and on GPUs. While
there may be a high number of steps, there is very little in terms of thread divergence: no
complex loops/switches/ifs/etc (see optimizations section on why this is a good thing).

Sorting networks may not be the best choice for sorting over a very large array. They may
however be a good choice for sorting smaller arrays that fit in shared memory (maybe as part of
a larger sorting algorithm). If you choose to do this, remember that you can use thread barriers
to sync between the threads in the block which the shared memory is for vs launching a new
kernel for each step.

NOTE: The lessons recommended that if you want to use as a sort network to sort an
array in shared memory, it's better to have 1 thread per input. A compare-and-swap will
take place on 2 threads, but both those threads will generate the same results. The
thread doesn’t end after a parallel step. Use a thread barrier to wait until all threads are
done for that parallel step before moving to the next parallel step.

There are two main types of a sorting networks: brick/odd-even sort and bitonic sort. There’s an
independent section available for each.

Serial

This is the 2nd example from the parent section (the 4 input example).

Python example...

(in_data, idx1, idx2):
in_data[idx1] > in_data[idx2]:
temp = in_data[idx1]
in_data[idx1] = in_data[idx2]
in _data[idx2] temp

data = [ b) b) b) ]
compare_and_swap(data,
compare_and_swap(data,

compare_and_swap(data,
compare_and_swap(data,
compare_and_swap(data,
print(str(data))




Output is...

Parallel

This is the 2nd example from the parent section (the 4 input example).

Python example...

Outputis...




Brick/Odd-Even Sort (Sorting Network)

One common sorting algorithm that can easily be made parallel is bubble sort. The parallel
version of bubble sort is called brick sort or odd-even sort.

When it comes to algorithm step/work complexity, brick/odd-even sort isn’t a particularly efficient
parallel algorithm. But, it is an algorithm that can easily exploit a lot of parallelism -- it can be
expressed as a sorting network. This will be discussed further in the parallel subsection.

There are better GPU sorts available, but there are also cases where you’ll want to use
brick/odd-even sort instead. For example, if you want to sort a small list in shared memory, a
brick/odd-even sorting network may be the way to go.

Serial

If you don’t remember what bubble sort is, it's basically an algorithm that iterates over a list and
compares each element to the element next to it, swapping if they’re out-of-order. It does this
multiple times, until it comes across a pass where no elements were swapped (there were no
out-of-order elements).

For example, this is what happens when bubble sort is used to sort the list [7,1,3,2,5]...

pass 1 pass 2 pass 3

Bwag

swap

swap

final




Python example...




Parallel

Brick/odd-even sort is almost the same as regular bubble sort. It boils down to doing several
passes over 2 map primitives. For each pass...

1. map even indices such that they swap data([i] with data[i+1] if out-of-order

2. map odd indices such that they swap datal[i] with data[i+1] if out-of-order

Repeat the above 2 maps until all elements are in order.

For example, this is what happens when brick/odd-even sort is used to sort the list [7,1,3,2,5]...

pass 1 pass 2 pass 3

final

The step complexity of this sort is O(n). This is worst case complexity, which happens when an
element that should be at the end of the array is at the beginning of the array. Notice how our
example fits this case. We have 7 in the first element when we start, but 7 is all the way at the
end when we finish. There were 5 elements overall and we did 6 map operations in total (6
parallel steps).

The work complexity of this sort is O(n?). Our step complexity is O(n) and we're pretty much
going over every element of the array at each parallel step, so the overall work complexity
essentially is O(n*n) — O(n?).

This is a poor work/step complexity, but note what’s happening in the algorithm. Each parallel
step is just a bunch of fixed compare-and-swap operations. This is pretty much a sorting
network. The fact that it is a sorting network means that it fits well with one of the main tenets of
writing code for the GPU: low thread divergence.




You may not want to use brick/odd-even sort for a large overall sort, but it may be good to use
for sorting a local list in shared memory. If you choose to do this, remember that you can use
thread barriers to sync between the threads in your block vs launching a new kernel for each
step.

NOTE: The lessons recommended that if you want to use as a sort network to sort an
array in shared memory, it's better to have 1 thread per input. A compare-and-swap will
take place on 2 threads, but both those threads will generate the same results. The
thread doesn’t end after a parallel step. Use a thread barrier to wait until all threads are
done for that parallel step before moving to the next parallel step.

NOTE: See the sorting networks section if you forgot what a sorting network is.

Python example...







Bitonic Sort (Sorting Network)

A bitonic sort is a sorting network that expects the input array to be a bitonic or monotonic

sequence.

What is a monotonic/bitonic sequence?
e monotonic sequence — sequence of ever increasing OR ever decreasing numbers.
e Dbitonic sequence — sequence that’'s made up of 2 monotonic sequences attached
together: it either increases then decrease or decreases then increases.

For example...
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How does a bitonic sort work? It turns out that if a sequence is bitonic, there’s a relatively simple
recursive process to get it sorted. The process begins by taking the 2 monotonic sequences that
make up the bitonic sequence and overlapping them together...
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Then, do a compare-and-swap for each of the overlapping pairs. All the smaller elements
should get moved to the first sequence and all the higher elements should get moved to the
second sequence...
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Notice that...

e all values in “smaller elements” are <= the values in “larger elements”.
e both “smaller elements” and “larger elements” are bitonic/monotonic.

Keep doing this overlap+compare-and-swap process for each output until you can’t break up the
sequence any further. Ultimately you'll end up with the input being fully sorted...
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The example above showed how a bitonic sequence gets sorted. However, in the actual sorting
network for a bitonic sort, your input sequence does not have to be bitonic. The sorting network
will make it bitonic.

For example, here’s a bitonic sorting network with 4 inputs...
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The arrows define the direction of the compare-and-swap. Any inputs going through a ...
e blue box will have descending compare-and-swaps (always have down arrows).
e green box will have ascending compare-and-swaps (always have up arrows).

Notice what’s happening in the stacks...

The 1st stack...
e compare-and-swap(0, 1, desc)
e compare-and-swap(2, 3, asc)
We end up with 1 bitonic sequence after the 1st stack: 0-3.

The 2nd stack...
e perform asc bitonic sort on 0-3
We end up with a fully sorted sequence after the 2nd stack.

The network scales out easily. Here’s the network extended to 8 inputs...
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The 1st stack...
e compare-and-swap(0, 1, desc)
e compare-and-swap(2, 3, asc)
e compare-and-swap(4, 5, desc)
e compare-and-swap(6, 7, asc)
We end up with 2 bitonic sequences after the 1st stack: 0-3 and 4-7.

The 2nd stack...
e perform desc bitonic sort on 0-3
e perform asc bitonic sort on 5-7
We end up with 1 bitonic sequences after the 2nd stack: 0-7.

The 3rd stack...
e perform asc bitonic sort on 0-7
We end up with a fully sorted sequence after the 3rd stack.



Here’s the network extended to 16 inputs. Process is pretty much the same, but this time the
last stack is switched to perform a sort in descending order (if you want an ascending sort you
can switch this back)...
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NOTE: The block diagram came from wikipedia. The wikipedia article shows another
version of the block diagram where ascending/descending doesn’'t matter, but | didn’t
have the time to comprehend how it worked so | left it out.

NOTE: In each of the block diagrams, for the 1st stack | mention compare-and-swap. Be
aware that a compare-and-swap on to adjacent elements is essentially the same thing
as doing a bitonic sort on an input of size 2. This is important because it makes the
algorithm simpler to implement.

Serial

Here are 2 serial examples of bitonic sort.

The first example is a hardcoded sorting network that will sort any input of size 4. It uses the
same compare-and-swaps shown in the 4 input example in the parent section.

Python example...

(in_data, idx1, idx2):
in _data[idx1l] < in_data[idx2]:
temp = in_data[idx1]
in_data[idx1] = in_data[idx2]
in_data[idx2] = temp

data = [ J J J ]
compare_and_swap(data, 0, 1)




Output is...

The second example is the same pretty much the same thing as the first example, except that
it's been generalized into an algorithm. It will take in any input (length must be power of 2) and
apply the necessary compare-and-swaps for a bitonic sort.

Note that the methods in this example map to the diagram shown in the parent section...
e Dbitonic_swap_step does the computations shown as red blocks
e bitonic_swap_sweep does the computations shown in the blue/green blocks
e Dbitonic_sort does the entire diagram

Python example...







bitonic swap sweep(
in_data,
step offset,
step size,
direction)
direction = direction.flip()

step size *=

data = [ 2750, ]
bitonic_sort(data, direction=Direction.DESC)
print(str(data))

Output is...
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Parallel

The block diagram for 16 input bitonic sort network is below. Notice how each vertical row of red
boxes is essentially 1 parallel step (each line is being touched by only 1 compare-and-swap).
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We can see that for an input size of 16, we have 10 parallel steps. We can generalize that to
O(logn) step complexity.

At each parallel step, we can see that we're doing 8 compare-and-swaps. That’s n/2
compare-and-swaps. We can generalize that as O(n) work complexity per step. Since our step
complexity is O(logn), our overall work complexity will be O(logn*n) — O(nlogn).

Like brick/odd-even sort, the fact that it is a sorting network means that it fits well with one of the
main tenets of writing code for the GPU: low thread divergence. You may not want to use bitonic
sort for a large overall sort, but it may be good to use for sorting a local list in shared memory. If



you choose to do this, remember that you can use thread barriers to sync between the threads
in your block vs launching a new kernel for each step.

NOTE: The lessons recommended that if you want to use as a sort network to sort an
array in shared memory, it's better to have 1 thread per input. A compare-and-swap will
take place on 2 threads, but both those threads will generate the same results. The
thread doesn’t end after a parallel step. Use a thread barrier to wait until all threads are
done for that parallel step before moving to the next parallel step.

For the parallel implementation, instead of trying to write a generic algorithm, the indices of the
sort network are hardcoded at each step. | think this is how sorting networks are intended to be
written for GPUs. If implemented as a generic algorithm, I'd imagine that we would have much
higher thread divergence?

NOTE: Sort networks are suppose to be efficient because they're “oblivious,” so we
should hardcode the indices at each step? See the sort network section if you need a
refresher on sort networks. For this implementation, | took the 2nd example from the
serial version and changed it to dump out the indices for each compare-and-swap, and
used those indices for the hardcoded version.

Python example...




Outputis...

Merge Sort

NOTE: Merge sort is an efficient sort to do on a GPU, but confusing to implement
correctly. If you can, opt for using radix sort -- it's a much simpler sort to implement and
works very well on the GPU.

Merge sort is a sort that, given enough contortions to the logic, can also be done in parallel on
the GPU. The trick to making merge sort work efficiently on GPUs is to perform a different
algorithm at each “tier” of data.

That means that you choose a different algorithm when the lists being merged are small vs
when they’re medium sized vs when they’re large. These different algorithms make sure that the

threads being launched are kept busy / doing lots of work, so we aren’t wasting GPU resources.

This will be discussed further in the parallel subsection.

Serial

If you forgotten how merge sort works, the core of the sort revolves around merging together 2
sorted lists.

The input array is recursively broken down until each sublist is of size 1...
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NOTE: Remember that a list of size 1 is implicitly sorted. There is only 1 element.

Then, those sublists are built back up as you walk out of the recursion by merging the lists.
Merging in this case means that the head element of both sorted lists are compared and the
smallest/largest one is taken. This is done iteratively until the lists are fully merged...
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Python example...




Outputis...

Parallel

The naive way to do merge sort in parallel would be to pretty much do the same thing as the
serial version, except that serial merge operations at each level would happen in parallel...
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Apparently, doing it this way is a poor match for the GPU (launching too many kernels? thread
divergency issues? etc..). A better way to merge 2 sorted lists together on the GPU would be to
launch a thread for each element of each list, where each thread will...
1. determine its elements position in its own list
2. determine where its element should be in the other list (via binary search)
3. scatter its value to ownldx + otherldx
NOTE: You almost always want to do these steps in shared memory, which means you
can’'t deal with merging large arrays. A strategy for merging large arrays is discussed
further below.

The first step is pretty basic. You can use threadldx to determine your position in your own list.
The second step is a bit more tricky. You basically need to find where your element would be in

the other list. Typically, the quickest way to do this is by running a binary search through the
other list...
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NOTE: Think of how Collections.binarySearch() works in Java -- if it can’t find it, it’ll
return the index of where it would be if it existed.

The third step determines the index of the element in the final list and scatters the element to
that location. You take where you are in your own list (step1 result) and where you should be in
the second list (step2 result) and add them together to find out where to place the element in the
final list...
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NOTE: This works because both lists are sorted. If you’re having trouble thinking about
it, just play through some small examples in your head.




NOTE: The diagram above is not entirely accurate. Note that the element 1 exists in both
lists. It looks like if the same value exists in both lists, they will get scattered to the same
location. Maybe check to see if you got an exact hit in the binary search and if so, just
move over some extra spaces if you're in list1 vs list2?

Python example...




Outputis...

There are a couple of things to watch out for here...

It's typical to replace the early steps of our merge sort with a sorting network. So, instead of

running merges on lists of a small size (e.g. 1, 2, 4, 8, ...), we can have each thread load up
1024 element chunks of the input data into shared memory and use a sorting network to get
those chunks sorted. Then, we can start off the actual merge sort threads with 1024 element
lists.

NOTE: Remember that sorting networks are super efficient when implemented on a
GPU and when the data being sorted is loaded into shared memory. See the sorting
network section for more info.

In the latter steps of our merge sort, if we’re working only with shared memory we won'’t be able
to merge larger lists. It turns out that there’s a way to split up the larger lists and distribute
chunks for merging to different thread blocks such that everything comes out properly sorted in
the end...



1. take both lists and split them up by n (e.g. 256)
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2. take the values at each split point and sort them

al: o i al 512 1 4000

3. we can use the splitter list to determine which block a merge should go to.

For example, imagine if we wanted to merge the 2nd and 3rd block designated by the
splitter list. We use binary search to calculate where 2nd’s value (512) would be in 3rd
block and vice versa. The range defined would be what would get merged by an
independent thread block.

NOTE: | don’t fully understand how this works. The lesson isn’t clear. Need to try
implementing at some point.

Because there may be many things happening here if we implemented it properly for the GPU,
it's tough to get an overall work/step complexity.

Radix Sort

Radix sort is the most efficient sorting algorithm when it comes to sorting on the GPU. A large
part of the reason for this is that it's simple and brute-force, just like sorting networkings. Unlike
sorting networks, you can use radix for sorting in global memory (super larger arrays).

One thing to keep in mind about radix sort is that it requires keys. The other sorts in previous
sections of this document all worked around the idea of comparison. Radix sort works around
the idea of having actual data for the key (e.g. integers), where pieces of this data (e.g. bits in
the integer) get split up and compared.



Serial

If you forgot how a radix sort works, you basically break up the key you’re sorting by into
symbols. Starting from the least significant symbol, you sort the list by that symbol. Then, move
up to the next symbol and repeat. Keep going until there are no more symbols.

What is a symbol? You can think of a symbol as the components that make up the key you're
sorting by. So for example, your key can be of type integer and the symbols you're sorting by
can be the individual bits that make up those integers. Another example is having a key of type
string and the symbols you’re sorting by can be the letters/numbers/punctuation that make up
the string.

Here’s an example of sorting a 3-bit integer...
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NOTE: Remember that when you're sorting by symbol to maintain the order in which
each element appears. For example, if you're sorting by idx 0, all the 0-bit items should
appear in the same order (the 1st 0-bit item in the original list with should get moved to
the 1st element, the 2nd 0-bit item in the original list should get moved to the 2nd
element, etc...).

Python example...

(data, bit pos):
reto = []
retl = []

bit mask = << bit_pos
val data:
val bit isolate = val & bit mask

val bit_isolate ==
ret@.append(val)







Parallel

The parallel implementation of radix sort involves boils down to doing multiple compact
operations per symbol. For example, imagine you’re dealing with bits. Starting at the least
significant bit, for each bit...

1. compact where bitis 0

2. compact where bit is 1, but append the results to step 1’s output

NOTE: Typically, for radix sort on the GPU, you should group by a larger symbol size.

For example, instead of sorting by 1 bit at a time, it’s typically to sort by 4 bits at a time if
you’re sorting on a GPU.

For example, imagine you're sorting a list of 3-bit integers and your symbol size is 1 bit...



Begin by doing the compacts for the least significant bit...
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Follow up by doing the compacts for the 2nd bit...
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Then finally the 3rd bit...
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Python example...













Algorithm Optimization

The following subsections detail optimization patterns for GPU program detailed in Stratton’s
taxonomy paper: http://impact.crhc.illinois.edu/shared/papers/optimization2012.pdf.

Data Layout Transformation

If the memory access pattern is strided, you can reorganize your input data such that it
becomes contiguous. The transpose communication pattern (read the map/transpose section)
covers this. Specifically, the part that covers converting an array of structures (AOS) to structure
of arrays (SOA)...



http://impact.crhc.illinois.edu/shared/papers/optimization2012.pdf

aos_struct var2;

( i=0;1ic«< ; 1++) A
var2.f[i] varl[i].f;
var2.j[i] = vari[i].]j;

Remember from the thread divergence section that threads execute in lock-step. As such, if all
threads are at the point of accessing soa_struct[i].f, it will be a strided access pattern (they’ll be
skipping over j)...
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If aos_struct.fi] were accessed instead, the memory being accessed by each thread will be
closer together (contiguous), so it's much more likely that the threads will hit the same chunk of
global memory being pulled in by the GPU. This means less global memory fetches overall...
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Tiling
Tiling is a fancy word for manually caching data that'll be worked on by the threads in a block

into shared memory. Once the processing is done, the data will be written back out to main
memory.



NOTE: | think the reason why this is called tiling is because it takes a “tile” from a larger
grid of 2D data into shared memory, processes it in shared memory, and writes it out
back to global memory. Since you’re working with tiles, it'll be reading from and writing to
“coalesced” global memory (see optimization section for more info).

Privatization

Privatization is a fancy word for keeping and working on a local output instead of hitting a global
output. Once work is complete on the local output, combine it into the global output (if
applicable).

NOTE: Take a look at the local histogram example earlier in this doc. You can do
mini-histograms local to each thread block, and then combine to a global histogram
using atomics.

Partitioning (Binning)

Binning is a fancy word for spatial partitioning.

The easiest example to think of here is calculating the distance from every city to every other
city in some map, and only keep those city pairs that are within 500km of each other. The brute
force way of doing this would be to pair up every city with every other city and launch a thread
for each pair.

Instead of doing that, you can partition the map into 500km x 500km bins. The cities would go
into their respective bin and the cities would only pair up with cities within their own bin or an
adjacent bin. As such, you would be launching much fewer threads...

NOTE: Doesn'’t really need to be said but this isn’t limited to 2D.









